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Introduction

This book is about the Personal Robots from the 1980's that inspired hopes for the future.
This was triggered, in part, by the robots of the Star War series. R2D2 was  based on the
three service droids of the early Science Fiction movie, Silent Running. They were named
Huey,  Louie,  and  Dewey.  At  the  same  time,  personal  computers  were  emerging  as
affordable and easier to use. The excitement and the technology reached a tipping point.
Before this  time,  robotics  mainly meant  large hydraulic  units  that  manufactured cars.
Now it came to mean personal companions. The expectations were limitless. We will
present the evolutionary path from those early products and efforts, to the projects of
today. 

The word robot is from the Czech robota, which means servant or laborer. It was coined
by  novelist  Karel  Capek  in  a  1917  short  story.  His  1920’s  play  R.U.R,  Rossum’s
Universal  Robots,  brought  the  term  to  the  public  eye.  “Robot”  was  first  applied  to
describe manipulator systems for manufacturing and the science fiction creations. 

Well before that, hacker extraordinaire Leonardo da Vinci animated a suit of armor with
mechanical mechanisms, drawings of which exist.

A large number of hobby-class robots appeared in the 1980s - chief among them the
HERO series from Heath. In the 1980's, the International Personal Robotics Conferences
provided  a  forum for  hobbyists  to  get  together  and  compare  notes.  Personal  robots
emerged as distinct from industrial (blue-collar) robots.

Nolan Bushnell, of Atari fame, described these early efforts as PC's on a p.c. - personal
computers on a push cart. The advent of personal computers, first the Apple, then the
IBM pc, enabled personal or hobby robotics, by providing the computation platform. The
next challenge was mobility, sensors, software, and mechanisms.

The Personal Robot Industry changed focus in several directions. As it became clear that
an affordable general purpose robot was both too complex technically and too expensive,
the  efforts  of  the  industry  and subculture  were  focused  in  other  directions  -  service
robots, with a well-defined role, and battlebots - a popular entertainment sport. Smaller
robot  construction  kits  from companies  such  as  Lego  emerged.  Toys  such  as  radio
controlled cars, boats, and airplanes provided mobility platforms.

Helicopters are hard to fly, but small computers and microelectronic gyros allowed for a
stable rotary wing platform at low cost. Deployed GPS technology allowed position and
destination determination. Not only was the technology becoming available, but it was
becoming cheaper. 

In the area of software, control algorithms could be implemented in c, but Seymor Papert,
at MIT, developed an object oriented language, Logo, specifically to teach programming
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to young children. They could control a “turtle” on the screen, or an actual plastic “turtle”
crawling around on the floor, but tethered with a cable. 

As Personal Robots are maturing, and the applications become more feasible as the basis
technology becomes cheap and available, it is an exciting time. 

Author

Mr. Stakem has degrees in Electrical Engineering from Carnegie Mellon University, and ,
Physics, and Computer Science for Johns Hopkins..

He teaches for Loyola University in Maryland, Graduate Department of Computer Sci-
ence,  and for  the  Johns Hopkins  University,  Whiting  School  of  Engineering.  He has
worked with numerous NASA Centers and space missions since 1971. He participated
for two years with NASA's Summer Robotics Engineering Boot Camp, which resulted in
a Volkswagen-sized autonomous Rover deployed in Greenland, measuring the thickness
of the ice sheet.

He participated in the personal computer revolution, building his first unit in 1975. In
1982, he built his first personal robot.

All photos by the author, unless otherwise marked.

Dedication

To the community of  experimenters who working and are working with robotic systems, 
just because it is fun.  
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Introduction
This books talks about robots we own personally. It attempts to identify the sources of the
advent  of  personal  robots,  and what  were  the  technological  drivers.  Robots,  both  as
servants and as unusual artifacts, have caught the imagination of people since at least
Greek times. Now, th technology has gotten us to the point where we can buy or build
robot units. These are not just toys, but machines we can program and operate to do work
for us. It is getting easier and less expensive to participate. I always believed, compute
projects are interesting, but when your project gets up off the workbench and walks off,
you've achieved something interesting. Let's take a look at a recent timeline in robotics. 

Time Line
Some significant dates in personal robotics. 

1939 – World's Fair. Westinghouse introduces Electro, a humanoid robot.

1942 – Asimov's 3 Laws of Robotics published.

1972 - Huey, Dewey, and Louie, Service Droids, appear in the movie Silent Running.

1975 – IBM PC announced

1977 - R2D2 and C-3PO appear in the Movie Star Wars Episode IV: A New Hope.

1977 - Apple-II computer introduced.

1979 - Heathkit kicks off the HERO Robot Project.

1980 – Seymour Papert's Seminal book on Mindstorms; logo language.

1980 – Robotics Age Magazine kicks off, not addressing the industrial domain.

1981 - IBM pc computer introduced.

1982 - HERO Robots available..

1983 - RB5X introduced by RB Robot Corporation.

1984 - International Personal Robot Conference - Albuquerque.

1985 - International Personal Robot Conference - San Francisco

1987 - Beginning of the Robot Battles/Battlebots.
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1990 – iRobot Corporation founded.

1997 – Honda's first autonomous humanoid robot, the P3.

1998 – Lego Mindstorm robotics modules introduced.

1999 – Sony's Aibo robot dog.

2003 – Robotshop founded.

2012 - Raspberry Pi board introduced

Drivers 
What  were  the  drivers  for  the  development  of  personal  robots?  What  stirred  our
imagination to implement these devices? 

Star Wars

The  first  Star  Wars  movie  by  Lucas  in  1977  set  the  bar  high  for  robots.  We  were
introduced to a humanoid robot, C-3PO, and a little maintenance 'droid, R2-D2. These
worked! They did things, they interacted with people. It was there on the big screen. It
could be done. The series of movies had a major impact on popular culture. 

According to wikipedia, “R2-D2 was designed in artwork by Ralph McQuarrie and co-
developed by John Stears but actually built  by Tony Dyson,  who ran his own studio
called the  White Horse Toy Company in the UK. Many scenes also made use of radio
controlled and CGI versions of the character. Original props of R2-D2 and C-3PO are
used  as  audio-animatronics  in  the  queue  area  of  Disneyland's  Star  Tours—The
Adventures Continue attraction.” Lucas acknowledges being influenced by the 3 robots in
the earlier film Silent Running. “In the original  Star Wars films, there were two R2-D2
models, one that was remote controlled and rolled on three wheeled legs, and another
which was worn by English actor Kenny Baker and walked on two legs. There were a
total of 15 R2-D2s on the set of  Attack of the Clones. Eight were radio-controlled; two
were worn by Baker; the remainder were stunt models that could be moved by puppet
strings.” What? Wait! They weren't computer controlled and autonomous? Next you'll
tell me 3-CP0 was a puppet. 

Reference:
http://www.starwars.com/databank/c-3po

Transformers

This popular Japanese series started in 1984. It was presented both on television and in
comic books, and later as a series of movies and video games. The units were created in
computer graphics. The whole Transformer ecosystem suggested what advanced robots
could do. The spin-off video games and toys were quite popular. This seemed to suggest
what advanced models were capable of. We obviously needed better computers.

7



Personal computers

The advent of the Apple-II and the IBM-pc brought computing to the masses.  Nolan
Bushnell  (of  Atari  fame)  called  the  resulting  robots,  “pc's  on  pc's.”  That's  personal
computers on push carts. The pc brought computing power down to a price an individual
could afford. Size, weight, and power were problems, but there were clever solutions.
There were extensive families of 8-bit microprocessors from Intel, Motorola, and others.
These came in embedded computer format, meaning a single chip that had a cpu, some
memory,  and  I/O.  Embedded  computing  boards  became  available.  An  embedded
computer is built into a system,  such as a robot. They don't necessarily have to interface
with a person via a keyboard and screen. They have a control function to do. They read
sensors, and drive actuators. Programs for them could be developed on pc's. The pieces
were coming together.

The Historical Units
This section discusses some of the more popular commercially available units from the
unique  period  of  personal  robotic  development  in  the  1980's.  Literally,  thousands  of
customized units came from the basements and garages of dedicated hobbyists.  Some
hobbyist and technology company's saw a large potential market, and Robot Stores, that
at one time might have been Computer Stores or TV/Radio Stores, appeared. 

Seymour's Papert's Logo language hid the complexity of programming. It was designed
to teach grade school children to program. It allowed motion of an icon on a computer
screen, called a turtle. Later, a small dome-shaped robot was connected by a wire, and
was  controlled  by  the  program.  It  was  a  physical  turtle.  It  was  very  simple,  being
controlled by the computer it was attached to. It had two driven wheels, and several bump
switches. Interestingly, it had a pen in a solenoid holder. You could command “pen up”
and “pen down”. If you drove the robot around on a big piece of paper on the floor, it
could write and draw – sort of a free ranging plotter. 

Some of the company's survived the downturn of the Personal Robotics excitement, and
some closed their doors. The level of excitement waned as the degree of difficulty was
realized. The hobbyists focused their efforts into other areas, as the complexity of the
problems became apparent. The problems were difficult, but not insurmountable.

The computers inside personal robots  are classical embedded systems - they have limited
user interface, usually do not host their own development systems, and are frequently
called upon to handle real-time tasks. This has not prevented enthusiasts from using off-
the-shelf pc hardware. This extends the limits of dedicated embedded controller boards,
but does not necessarily address the real-time responsiveness requirement. This is mostly
a operating system software issue. Standard linux, bsd, and Windows are NOT real-time
operating systems. They are fast enough to appear to be, but will not correctly prioritize
tasks in the real-time environment. 

Embedded  computer  systems  have  certain  unique  characteristics.  They support  Real-
Time  requirements  for  tasks  that  have  deadlines,  or  defined  timing  requirements  for
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particular actions to be accomplished. They are event driven - the actions of the system
are  in  response to  events,  not  necessarily  a  predefined  sequence.  They are  resource-
constrained in terms of memory size, speed, power, weight, volume, interfaces, etc. And,
they are special purpose - the device needs only to perform certain well defined tasks.
This is opposed to the general purpose desktop, laptop, or tablet, which tries to do every
task reasonably well.

The computers inside personal robot systems have gotten smarter by orders of magnitude
since most of the units discussed here. Starting with 8-bit embedded controllers, we now
have the luxury of using 64-bit multi-core cpu's with gigabytes of RAM memory and
hundreds of gigabytes  of external memory,  all  while using less power, taking up less
space, and operating faster than the original units. And, incidentally, available at a very
low cost. In addition, the support software is usually free with the hardware, and easy to
use. 

The Moore's law exponential increase in hardware capability has not been matched by a
corresponding increase in software capability, or software development ease. This is true
for off-the-shelf operating systems as well as the application software. A real-time system
is  defined  as  one  in  which  the  timing  of  the  result  is  as  important  as  the  logical
correctness. The right result at the wrong time is useless. 

An operating system manages resources such as memory,  I/O, interrupts, and tasks. It
serves as the manager to arbitrates and enforces priorities. There are more than enough
good  operating  systems,  even  with  real-time  support,  to  choose  from.  This  is  not
suggesting that it is not worth while to write your own - you've got better things to do.
However, you can't always plug in in and have it work as you hoped.

The early robots, the Hero series, the Gemini, RB5X, did not use operating systems per
se. The functionality was there, buried in the code in a ROM, but it was mostly a state-
based control loop with some interrupt capability. The application code was proprietary,
and code interfaces were non-obvious. 

Conferences

The International Personal Robotics Conferences were the result of the National Personal
Robot Association (NPRA). Several conferences were held with enthusiastic hobbyists
from around the world. The NPRA became the National Service Robot Association.

The  first  International  Personal  Robotics  Conference  was  held  in  Albuquerque,  New
Mexico, in April of 1984. I attended with my family and my co-author on a presented
paper,  "Sensors  for  Robots,  the  Integration  of  Sensed  Data,  and  Knowledge-Based
Navigation Systems."  The topic was in the area that would later be known as sensor
fusion - taking different data from different sensors, and blending them together into a
world view.  We had been working with Heath's  Hero-1,  and the Gemini  robot,  from
Arctec Systems. We used Polaroid ultrasonic rangefinder data, active infrared sensors,
and optical sensors. Vision systems were in the future.
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Albuquerque  was  the  home  of  one  of  the  early  players  of  the  personal  computer
revolution, MITS, whose 8-bit Altair computer kit sparked great interest. MITS, Micro
Instrumentation  and  Telemetry  Systems,  was  started  as  an  electronics  and  telemetry
company for Model Rocketry. By 1984, MITS was already history. 

The show floor was a who's who of commercial firms and individuals involved in the
emerging personal robot business. In retrospect, the technology base was not quite there
yet.  More  than  25  years  ago,  personal  robots  was  a  high-interest,  high-energy  area,
spurred on by the emergence of personal computers. Interest was high, due to the robots
in the recently released Star Wars films. 

The IPRC was the brainchild of Joe Bosworth, of the RB5X robot fame, and Nelson
Winkless. The first IPRC had 500 seminar attendees and  3000 exhibit attendees. 

The second International  Personal Robotics Conference was held in San Francisco in
1985.  I  attended with my co-author  with a paper  entitled,  ""Robot  Hand Sensors for
Object Location and Manipulation." We had done a lot of work with sensors mounted to
the gripper of a HERO-1 robot, both tactile, and distance-sensing. There were a lot of
new  robotics  products  introduced  since  the  previous  years  show.  Momentum  was
building. 

These shows and conferences were much different than the traditional Robot Shows, held
in  Detroit  and  Chicago,  and  featuring  large  hydraulic  units  weighing  hundreds  and
thousands of pounds. The message was, you could build your own R2D2 for home use.
Personal computers will enable this. It's a simple matter of software...

Heath Hero

In 1983, a robot for the home hobbyist with computer control was a significant item of
technology. The development of this device was accomplished by Heath Company, of
Benton Harbor, Michigan, producer of the popular Heathkits. In fact, the Hero Robot was
available in both kit and assembled form.

The author bought one of these units at the local Heathkit store, complete with the arm,
and began assembly immediately. Total construction stretched across some 2 weeks, with
no major  problems,  due  to  Heath's  extensive  experience  in  kitting  parts,  and writing
detailed and readable step-by-step manuals of exceptional clarity. 

The main CPU was a Motorola 8-bit 6808, part of the 6800 series. The Motorola 6800
chip was introduced in 1975. It had a much simpler architecture than the Intel chips, with
72 instructions,  and a  single 16-bit  index register.  There were one to three bytes  per
instruction, The index register modifies operand addresses during execution, typically for
vector/array  operations.  Before  index  registers  and  without  indirect  addressing,  array
operations were complicated to implement.

The 6800 was the first in a family of microprocessors and support chips. It had 8-bit wide
data, and a 16-bit wide address bus. It  required a single 5-volt power supply, and used a
simple two-phase clock source. It was a synchronous design, so the clock could not be
stopped or changed. It had a problem WAIT-ing for an external operation. A machine cy-
cle was defined as a Phase 1 and a Phase 2 clock. During Phase1, the address for the in-
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struction fetch was placed on the bus. During Phase 2, the instruction was read. On the
next Phase 1, the instruction was executed. There were two sets of accumulators, A and
B. All Input/Output was memory mapped; no separate I/O instructions were provided.
The status register contained bits to indicate carry/borrow, overflow, zero, negative, and
half-carry, as well as an interrupt mask.

All interrupts were vectored. The 6800 included a non-maskable interrupt (NMI). This
fetched the contents from memory addresses FFFC and FFFD into the program counter,
effectively forcing a jump to the contents of those addresses. The NMI was the highest
priority interrupt. Interrupts were always serviced after the completion of the currently
executing instruction. The normal interrupt vectored through locations FFF8 and FFF9.
The 6800 had a software interrupt instruction. Executing this instruction was just like an
external interrupt occurring. The difference was, it was synchronous to program execu-
tion. The program vectored through locations FFFA and FFFB. The RESET signal can be
considered an interrupt. With a positive going edge on the reset line, program accessible
registers were cleared, and hardware was initialized. The interrupt mask bit was then set,
locking out other interrupts. Then the machine vectors through memory locations FFFE
and FFFF. There was also a WAIT instruction, that caused the processor to stop process-
ing and wait for a hardware interrupt.

Control signals were relatively simple. The VMA line indicated a valid memory address
on the address bus. The R/W signal indicated whether the bus was doing a read or write
operation. BA indicated the bus was available, as the processor had tri-stated its data and
address bus and control lines. An Enable signal was available from AND-ing Phase1 of
the clock, and the VMA signal.

The HERO used the 6808 8-bit microprocessor, which was a 6800 pcu with 4 kilobytes
of ram, and 8 kilobytes of rom.  Offline storage was provided by a cassette interface. This
used a standard audio cassette drive to store data expressed as tones at 300 baud. Better
than nothing.

User input was accepted on a hex keypad,  and output included six hex LED's. More
importantly,  the voice synthesizer  could be used as output.  One could get  a memory
dump  read  aloud,  which  helped  in  debugging.  The  SC-01  speech  synthesizer  was  a
phoneme-based unit.  During initialization,  the  voice  gave progress  reports  as  various
systems  were  checked  and  verified.  This  is  similar  to  the  BIOS function  in  pc's.  A
dictionary for the synthesizer was provided. A remote control teaching pendant allowed
guiding the robot through a series of steps that were memorized, and could be repeated. 
The drive  was a dc motor, with a stepper motor for steering. The unit could move at
three feet per second, and weighed 39 pounds. The shell measured 18x18 inches, and was
20 inches high. 

The sensors included a Polaroid rangefinder, light and sound sensors digitized to 8 bits,
and a motion detector. An optical encoder on a wheel provided an odometer function.
There was a breadboard unit mounted on the head, with control and data signals brought
out. This was ideal for prototyping. 
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The body had an aluminum structure, with molded plastic shells attached. The battery
was a 12 volt, 4 amp-hour gelled lead acid unit. It was recharged manually using a plug-
in charger. The head of the robot rotated 350 degrees, and carried most of the sensors and
the arm.

The optional arm had 5 degrees of freedom, and could lift 16 ounces. It was controlled by
software within the single 6808 processor. Stepper motors were used at each joint.  The
forearm assembly could extend and retract 5 inches. There was no elbow. The wrist could
pivot up and down 90 degrees. It could also rotate 350 degrees. The hand was a two-
fingered gripper, capable of opening about 3 ½ inches. There was no feedback in the arm.
One interesting experiment  was to coordinate  wrist  and shoulder angles,  so the robot
could lift a cup of water, without tilting and spilling it. 

There was a single drive/steering wheel that was powered, and two idler wheels. With the
weight on the driven wheel,  it  often diverged from its intended path,  and didn't  have
anyway to tell. The wheel did have an odometer The steering mechanize was a stepper
motor.  For human interface,  the head assembly had six 7-segment  display,  and a hex
keypad. Keep in mind, with its voice synthesizer,  the robot could talk to you. It also
included a clock/calendar.  There was a hand-held teaching pendant where your could
operate the robot through a series of maneuvers, and it would store the sequence, and
could repeat it. 

Many high schools and colleges found the Hero unit to be ideal in an Introductory Robots
course, and Heath provided the courseware. 

Robots could share information, such as Asimov’s book, their “bible.”
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Robots could water the plants.

Robots could maintain other robots.
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Robots could cook our meals.

Most importantly, our robots could build more robots.

Upgrades

Software built into the Hero's computer would allow program loading and dumping in a
serial format. This could be used with the cassette interface as described above, and could
also be level shifted to RS-232 serial communications levels (-/+ 12 volts). This allowed
a direct connection to a development computer, a pc that hosted 6800-family software
tools. 
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One modification  that  was relatively  easy  to  make  was to  add bi-aural  hearing.  The
existing sound sensor was replaced by two small microphones on either side of the head,
and an analog switch was used under program control to direct one of the two units to the
existing analog to digital circuitry.  A demonstration program would alternately sample
the two inputs, and rotate the head until they were equal. When you spoke to the robot, it
would politely turn to face you. 

After the Y2K issue died down, I copied, modified, and burned a new PROM for the
robot, which changed the year from “19” to “20”. This allowed the spoken year to be
correct. That took a pc connected to a PROM burner, and special software.

The Hero unit was a good ambassador. I was asked by a Public Relations firm to do a
ribbon cutting ceremony for a new Federal facility. I modified a pair of scissors to fit the
Hero's gripper, and determined the safest ribbon to cut would be a crepe-paper streamer.
The day of the ceremony was a typical humid one in Washington, and as the ceremony
droned on, the crepe paper got damper and damper, and sagged more and more. I had to
keep nudging the support poles further apart to keep it taught. Finally, it was the robot's
turn, and he did a little speech, and expertly cut the ribbon.

I did a similar ceremony for a local county library, which was attended by the county
executive. Here, Hero and his scissors were accompanied by a Gemini robot. He got a
round of applause, except from Gemini, who had no arms. My question, which was not
answered, was whether a robot could get a library card?

I also accompanied the Hero when he did a television interview. The script was canned,
and the anchorman only had to hit a key to get the next response. We practiced it, and it
worked  well.  My role  was  to  sit  there  and  smile,  as  the  anchor  man  and  the  robot
discussed technology. As luck would have it in these situations, the software disappeared
a few minutes from air time. We would have to type it back in manually, in hexidecimal.
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Turns out,  anchor-persons are  good readers  with excellent  diction.  He read  from the
print-out, I typed, and the robot was ready in time. I sat there and smiled.

Hero-JR

The Hero was followed by a little brother, Hero-JR. The Junior did not have an arm, but
the  drive  and  steering  were  improved,  and the  computer  was  more  capable.  Plug-in
cartridges,  containing  rom's,  allowed  for  easy  implementation  of   new features.  The
original Hero robot from Heath was quite a hit among hobbyists. The Junior model was
less expensive. The head was fixed and did not rotate. It used a 12 volt, 4 amp-hour gell-
cell lead acid battery, with a plug-in charger. 

The unit had an embedded 6808 processor. I bought one of these units as a kit, and as-
sembled it. The 6808 had 2 kilobytes of ram, expandable to 24 k, and a 32k ROM. It also
had a RS-232 interface that can be used to communicate with the outside world. Shared
memory between the 6808 and another processor was also possible. The existing system
has a hex keypad and display,  and a voice synthesizer.  The most effective method of
robot-to-human communication is with the voice unit. The sensor board also controls the
robot drive and steering electronics.

The existing sensor suite included light and sound level sensors (digitized to 8 bits), a
passive  infrared  motion  detector,  an  active  sonar  ranging  system,  and  the  odometer.
Actuators include the dc drive motor, and the steering motor. These are all interfaced to
the CPU card via a custom I/O card in the robot. 

Since the embedded 6808 processor already had a version of Wintek BASIC in ROM
with all of the necessary robot-relevant constructs, that language was used. The existing
embedded controller operated in closed-loop mode, commanding the motor drivers and
monitoring  the  odometer.  It  could  also  use  the  sonar  and  other  sensors  to  detect
impending collisions.

The Hero Basic  language was contained  in  an 8-kbyte  cartridge  ROM. It  allows for
integers only, and the variables are A-Z. Control constructs are IF-THEN-ELSE, FOR-
NEXT-STEP, GOTO, and GOSUB. Peek and Poke are supported, and (M6808) assembly
language subroutines can be used. A useful command is the SPEAK "phoneme-list." The
language  could  read  the  eye  sensor  (8  bits),  sound  sensor  ("ear"  8  bits),  the  sonar
rangefinder (1-157 inches), and a motion detector.

The 6808 was a classic 8-bit embedded processor with limited resources and human in-
terface. I decided to upgrade the onboard computation resources with add-in units, under
the constraint that the original computer system would not be touched. I also wanted to
host the development environment for the 6808. This was enabled by the drop in cost and
increase in capability of pc-based boards. The problem was the power draw.

Thirty  years  later,  there  have  been  major  improvements  in  compute  power  and
communications that the robot  benefits from. The mobile robot platform is circa-1984. It
operates from a rechargeable 12-volt battery, and has one driven steering wheel, and two
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idler  wheels,  one of which has an optical  odometer.  The computer  had no secondary
storage,  and  custom sensor  and  actuator  interfaces.  It  has  a  simple  hex  keypad  and
display,  and  does  include  voice  synthesis  via  an  SC-01  chip.  The  robot  draws  280
milliamps when it  is  not moving.  In sleep mode,  the robot wakes up briefly every 5
seconds or so to see if it should transition into operational mode. Sleep mode preserves
the systems settings, while minimizing power draw. The system performs well with low-
level servo tasks, but sorely needed a technology refresh. The  existing  electronics  of
the unit, although more than 25 years old, were working fine. 

The primary design constraint was minimal modification of the robot system. This meant
that added hardware had to operate from the 12-volt battery, and use existing interfaces to
the embedded computer, not replace the existing embedded computer. This was partially
due to lack of detailed documentation of the internals of the existing system, and partially
the desire to preserve a classic system that was rapidly becoming a collectible. There are
two electronics boards in the unit – one for sensor and motor interfacing, and the other
for the CPU. Replacing the CPU card would entail re-programming the custom sensor
and motor control. I made the decision to leave the existing electronics alone, and add a
second computer board interfaced to the existing board via the RS-232 interface. 

The desired modifications had several aspects: the new hardware, the new software, and
the communications link. 

Under the self-imposed constraint of minimum modification to the existing configuration,
the added pc would connect to the existing embedded controller via its RS-232 serial line.

A variety of added Intel and Motorola-based computational platforms were tried. These
were all either too limited in capability, or required too much power to operate.  An IBM
PS2/35 EX board drew 1.65-1.73 amps, with 4 megabytes of memory. A similar 386SX-
40 board drew 1 amp with 4 megabytes of memory installed. A 68020 board drew about
1 amp. A Motorola 68HC11 board drew 110 ma, but had limited (8 kbytes) ram. It was
hard to find an add-in CPU board that met the requirements and goals.

The Embedded Linux Journal (ELJ) Contest of 2001 provided me with a MZ-104 single
chip pc computer board with embedded linux, in response to my proposed project entitled
“LERP – Linux Embedded Robot Program”. 

The Linux Embedded Robot Project (LERP) was targeted to extending those resources
and  interfaces,  and  providing  a  development  environment.  The  Linux-based  MZ104
board was a pc-style architecture. All in all, the MZ014 board was ideal in this applica-
tion, and provided processing, storage, and I/O resources that were not limiting. The low
power MZ-104 was the answer.

The MZ-104 provided a single-chip PC-compatible computer capability, with a pc104-
ISA bus. The configuration used is the MZ-104 motherboard, the 3-slot ISA expansion
bus with a VGA card and 3Com 3C509 network interface card, and the system expansion
board with serial, parallel, usb, keyboard, mouse, and game (A/D) ports. The CPU board
supports a floppy drive and two standard IDE devices. It registers a blazing 38.4 -mips in

17



performance. The MZ-104 board is pc-104 form factor (3.55 inch x 3.75 inch), and hosts
an 8-megabyte disk-on chip device. The CPU board draws 0.6 amps at 5 volts.

The add-in CPU board can be used with a standard keyboard/mouse/VGA monitor, or
can be remotely controlled from a networked (or inter-networked) computer running a
remote  desktop program.  Thus the robot,  as  a  node on the Internet,  can be remotely
controlled by any other computer on the Internet, and can relay to the master unit what it
senses. This was Science Fiction when the Hero-Jr was designed and built.

The video card was an ISA bus unit, as this is what the MZ-104 expansion bus supports.
This limits the capabilities of the video card. In fact, the video card did not supports the
display mode required for a webcam, which requires a minimum resolution of 800 x 600
pixels, and 16 colors. 

A power-switched floppy was included on the robot. It added minimal weight, and was
normally powered off. A CD drive was added as needed to the ide interface. A DVD
drive could be used as well.

The hard drive was a large power consumer. Standard hard drives in the 1-2 gigabyte
range consumed about 5 watts. A laptop drive, which has the advantage of not requiring
the 12-volt supply, draws about 1/2 of this, and is less shock sensitive as well. The ideal
device,  coming down in price  rapidly,  was the Compact  Flash (CF) solid  state  card,
adapted to emulate an ide drive. This consumes essentially no power and is non-volatile. 

The hard drive allowed the MZ014 also to host the development environment for the
6808. This consists of a series of 6808 cross-software tools; an assembler, linker, and
loader. It could also hold documentation in PDF form, and ROM maps.

These capabilities opened new world of opportunity;  for example, it  became trivial  to
interface  a  wireless  NIC,  a  GPS unit,  and  video  cameras  (when appropriate  devices
drivers were available).  When the wireless LAN was implemented,  the keyboard and
mouse, the VGA, and the hardwired LAN card became redundant except for low-level
debugging. As the pc became part of a network, it was reachable by remote access from a
convenient  laptop.  The  onboard  pc  could  also  take  advantage  of  large  amounts  of
network-attached storage, off-platform computing power, and web-enabled applications.

There is a communications:storage trade-off with onboard resources. If something like a
gps  map  database  is  required,  it  can  either  be  stored  onboard,  or  accessed  over  the
wireless  network  connection  from attached  storage.  The  added  computer  provided  a
wireless interface to larger computers off of the platform. These network-based resources
could be considered the “robot cloud.”

The MZ014 was checked out with DOS and Windows, and with the BlueCat and ELKS
Linux distributions. Since it was a standard pc-style architecture, interfacing with off-the-
shelf hardware components was possible.

The robot was battery powered, so a custom power supply for the MZ104 was construct-
ed. This uses a +12 volt input from the battery, and provided the necessary +12, -12 and
+5 volts. Power consumption is a major issue for battery life. The MZ104 using serial
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console mode draws 500-560 ma. This rises to 890 ma with the floppy in use, and 1.78
amps with the hard drive in use. While the custom power supply was installed, a special
jumper connection was added, to supplement the robot's 12 volt, 4 A-H battery. This al-
lows an external 12 volt supply (such as a jump-start unit for a car) to be used to run the
robot on the bench, and charge the battery. This is in addition to the robot's small wall-
mount recharger.

The embedded 6808 processor board was connected to the MZ104 via an asynchronous
serial line, using a 9600E71 protocol. When the 6808 is running its built-in BASIC inter-
preter (in cartridge-ROM), the MZ104 acts as a terminal, to download BASIC programs
to the 6808 (the alternative being 6800 assembly language). LOGO would be a better
choice, but it is not ported to the 6808. Logo can be run under Linux or Windows, on the
MZ104.

The MZ014 computer was built into the base of the robot, and powered from the battery.
The floppy and hard drive were included, but not normally powered. The serial console
of the MZ104 is tied to a development LINUX box. 

The LOGO programming language is used to direct the robot’s activities.  The LOGO
system  acts  as  a  “just-in-time”  production  facility  for  code  the  embedded  controller
understands, which is downloaded over the RS-232 line, and executed. 

This was an interesting augmentation project, taking place over a period of 6 years. In the
LERP project, the MZ104 hosts the development environment and provided high-level
guidance  to  an  existing  embedded  MC6808  device  controller  within  the  robot.  The
Linux-based processor was to run higher-order packages based on Logo, Java, Python, or
other languages, while the 6808 board is limited to assembler or BASIC. At this time, I
found Logo to be the right solution. 

But, as time went on, there was an even better solution than the MZ-104. An embedded
pc was added with minimal modification. The embedded pc brings modern interfaces and
capabilities  such as  wireless  LAN,  usb  connections,  sufficient  memory for  advanced
language  support,  and  secondary  memory  devices  such  as  hard  drives  and CD/DVD
drives.  The  selected  board  was  a  mini_ITX  pc  motherboard,  using  the  Intel  Atom
processor operating at 1.6 GHz. It has 1 gigabyte of RAM, serial and parallel interfaces,
four usb ports, a LAN connection, and built-in video and sound. I added a 20 gigabyte
laptop (2.5”) IDE disk drive.  I  installed  Windows-XP, a Zonet  usb w-lan,  and a usb
camera. A CD or DVD can be connected via the USB for software loading. The only
interface the board lacks is the game (or joystick) board, which can also be used as a dual
channel A/D. This is easily added with a USB adapter. The total cost of the CPU board
plus memory was $60. Windows-XP was chosen because the version of LOGO that runs
under this operating system has I/O support. The XP footprint can be minimized, and no
hard  real  time  tasks  are  require  of  it.  The  board  brings  with  it  the  ubiquitous  USB
interface, which allows for the seamless integration of devices such as gps and webcams.
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The added processor operates from the robot’s +12 volt battery. The power supply is a
marvel  of  miniaturization,  being  built  entirely  on  the  ATX  power  supply  mating
connector. It is an 80-watt unit, supplying the voltages that the motherboard and disks
require. On the bench, a standard wall-power supply can be substituted to conserve the
battery. The added CPU card drew 1.85 amps with the laptop hard drive. A CF flash-
based hard drive does not significantly reduce the power draw.

Architectural models of Hierarchical control

The  robot's  embedded  computer  acts  as  the  lowest  level  of  control,  the  servo level,
interfacing with sensors and actuators.  The added pc acts  as an intermediate  level  of
control.  Additional  computational  resources can provide higher levels of goal-seeking
control to the system via a wireless connection. This follows the general principals of the
NASREM model, based on work at NIST and NASA, and the Flight Telerobotic Servicer
Project.

The existing 6808 board hosts the servo level control, providing a closed-loop with the
motor and sensors, and receiving commands from the next higher level. This corresponds
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to Arkin's (see references)  reflective or reactive level, and the cortex level is more like
Arkin's  deliberative  level  of  control.   This  next  higher  level  is  the supervisory level,
which decides what to do. Above that level, and implemented external to the platform, is
the world model.

The Logo system running on the pc board presents an abstraction layer between the user
and the underlying hardware at the servo level. The details of the servo level are hidden.
The user does not operate at the "brain stem" level, but at the "cortex" level with goals
and schema, not control and status bits. 

Added Software

The pc board was checked out with Windows and various linux distributions such as
RedHat 6.2, BlueCat 3.0, and the ELKS. Linux is the ideal operating environment for the
added computer system. With Linux, you can control the software components in the
system build. In this particular application, the computer does no “real-time” processing.
A very simple, streamlined Linux, the VectorLinux distribution, was finally chosen. This
distribution  works  well  with  limited  resources.  The  installed  version  was  4.3.  It  is
supposed  to  require  a  minimum  Pentium-166,  but  was  happy  on  the  Pentium-100
equivalent of the MZ-104 board. The unpacking of install  packages did take a while.
Eventually,  I loaded the software on another, faster system, and then moved the hard
drive. VectorLinux will run in 32 megabytes of memory, and a minimum load has an
850-megabyte footprint on the hard drive.

VectorLinux  used  kernel  2.6.7  The  size  of  the  load  can  be  kept  under  1  gigabyte,
allowing the use of a CF card in place of a hard drive. LILO was not completely happy
with the CF card, so GRUB was substituted.

Logo is the ideal language in which to program robots. It is designed by Seymour Papert
for small children to do just that. It is derived from Lisp (but has fewer parentheses). It
has very simple concepts and constructs to allow users to use the language rapidly to
achieve immediate results. Python is sometimes referred to as the "new Logo" but lacks
the turtle graphics. Berkeley logo (UCBlogo) is available for Linux platforms. The tested
version was 5.4. MSWlogo, based on Berkeley, is reported to run under WINE.

Consider a Logo program to move a robot in a square; we will refer to this procedure as
"squaredance." The program consists of a linear movement followed by a 90-degree turn,
repeated  4 times.  In Hero Basic,  this  would be accomplished by 4 executions  of  the
program:

FWD 1

RT 90

The equivalent Logo would be:

to squaredance

repeat 4 [fd 1 rt 90]

end
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This commands the turtle,  the onscreen graphics object,  to execute the motion.  What
remains is to translate the motion commands from logo to basic, and to communicate
these to the robot via the RS-232 interface. The computers are connected with a short
serial null-modem cable, a 25 pin connector on the robots side, and a 9-pin connector on
the pc side.

Here are the correspondences in Hero-BASIC and Logo for the motion primitives:

HeroBasic           Logo

FWD inches FD x

BWD inches BACK x

Left deg LT deg

Right deg RT deg

The serial port must be opened and configured:

Portopen "com1

Portmode "com1:9600,e,7,1

At the end, we would normally close the port:

portclose

Metaprogramming 

Metaprogramming refers to the production of programs for other computers. In this case,
the LOGO program synthesizes a BASIC program from templates, and stores it as a list.
A metaprogram is a program that produces code, much like a compiler. If we produce
code for a different architecture, we have a cross-compiler. This process is implemented
on the robot in near-real time.

Logo procedure to Move Forward

to Moveforward

fd 3    ; move the turtle object on the screen

portopen "com1

portmode "com1:9600,e,7,1

show portwritechar 13    ; send a character return, check response

show portread char

make "buff {70 87 68 32 49 13} ; synthesize a list that says "FWD 3 <cr>

show portwritearray 6 :buff    ; output the list of 6 characters

portclose

end
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The latest for Hero Jr., now 30 years old, is yet another update involving the Raspberry Pi
architecture. An evolution from the pc, the Pi provides a linux-based deck-of-cards sized
processor. Running linux, any number of applications, such as a web server (Apache) are
available. 

The Raspberry Pi is  a small,  inexpensive,  single board computer  based on the ARM
architecture.  It  is  targeted  to  the  academic  market.  It  uses  the  Broadcom BCM2835
system-on-a-chip, which has a 700 MHz ARM processor, a video GPU, and currently
512 M of RAM. It uses an SD card for storage. The Raspberry Pi runs the GNU/linux and
FreeBSD operating systems. It was first sold in February 2012. Sales reached ½ million
units by the Fall. Due to the open source nature of the software, Raspberry Pi applications
and drivers can be downloaded from various sites. It requires a single power supply, and
dissipates less than 5 watts. It has USB ports, and an Ethernet controller. It does not have
a real-time clock, but one can easily be added. It outputs video in HDMI resolution, and
supports audio output.  I/O includes 8 general purpose I/O lines, UART, I2C bus, and SPI
bus.

The Raspberry Pi design belongs to the Raspberry Pi Foundation in the UK, which was
formed  to  promote  the  study of  Computer  Science.  The Raspberry Pi  is  seen  as  the
successor to the original  BBC Microcomputer  by Acorn,  which resulted in the ARM
processor. 

Using  the  LAMP  (Linux-Apache-MySql-PHP)  approach,  Web  enabled  applications
running on the robot, such as a remotely accessed parameter page, and web cam  are now
easy.  The  robot  is  able  to  measure  and  report  its  battery  voltage  and  the  ambient
temperature. We can add tilt sensors, an electronic compass, and GPS. The processor is
powerful enough to handle a video camera or two. 

Most  of  the  robot’s  interaction  (robot-to-person)  is  centered  on  the  built-in  speech
synthesizer. An interesting feature is the spoken progress of the self-test and calibration
routine.  In  the  robot’s  BASIC interpreter,  the  system can  say  a  phrase,  enclosed  in
parenthesis.  Since  the  Pi  can  host  a  Siri  type  ap,  voice  command  and  interaction  is
feasible. Berkeley Logo is available for Linux. 

Future Directions 

Emerging standards, such as those proposed by the Robotic Engineering Task Force, will
help  to  ensure  that,  in  the  future,  control  algorithms  and  programs,  as  well  as  the
hardware itself,  will  be common across robotic  platforms.  For example,  an "explore"
program should not care whether the underlying hardware is wheeled, tracked, buoyant,
or winged. The application of Open source hardware and software accelerates the spread
of applications across the research community. 

We can envision swarms of cooperating mobile robot platforms, deployed for a variety of
purposes in hazardous environments. Modeled on the behavior patterns of insects, these
groups of robots will act individually according to local conditions, but in cooperation
with their peers, without a “master plan” or top-down control.  StarLogo, from the MIT
Media Lab, implements multiple interacting turtles, leading to implementation of robot
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teams and swarms. A distributed StarLogo, implemented in software agents, provides the
basis for multiple cooperating robots.

The  robot's  embedded  computer  acts  as  the  lowest  level  of  control,  the  servo level,
interfacing with sensors and actuators.  The added pc acts  as an intermediate  level  of
control.  Additional  computational  resources can provide higher levels of goal-seeking
control  to the system via the wireless connection.  These resources can now be cloud
based. This unit is still in operation at this writing. 

Hero-2000

The Hero-2000 robot was vastly superior to either of the predecessor units. In fact, Heath
assembled a panel of experts at the factory to evaluate a pre-production model, and its
advances were readily apparent. It used a 16-bit processor with a modular bus structure,
and a series of 8-bit controllers dedicated to servo and sensor tasks. The computer could
interface with a disk drive and utilized a bus structure. Although not DOS-compatible,
the  system  was  very  close.  The  next  unit  would  most  certainly  use  a  standard  pc
architecture.

A  lot  of  robot  enthusiasts  adopted  the  Hero  Robot  from Heathkit,  and  extended  its
capabilities with new hardware and software. When Heath developed a new generation
robot, the Hero-2000, they selected a cross-section of early adopters to come out to the
Benton Harbor plant, and critique the Hero-2000 (ET-19) before it was introduced. I was
one of the lucky few, based on my relationship with the Heath robot folks.

The Hero-2000 robot was vastly superior to either of its predecessor units. The main 16-
bit cpu had  I/O port communication windows with 9 servo level controllers, which were
8-bit dedicated systems handling control axis  in the arm and base such as wrist, elbow,
and shoulder. A remote link and keyboard was provided. Sensors included 360 degree
coverage sonar, with light, temperature,  and sound sensing. The charger was an auto-
dock, that the robot could seek and find when the batteries got low. 

The main processor was a 16-bit  Intel 8088, with 8-bit Intel 8042 units as slaves, 6 in the
main configuration, with 5 more in the arm, one for each joint. This allowed each joint to
be moved simultaneously,  something the original  Hero could not  do.  The arm had a
gripper with a sense of touch, and could lift a pound. The main CPU had 24 kilobytes of
ram, expandable to 576. It had a 64k ROM with BASIC. 

The Intel 8088 CPU was a variant of the Intel 8086 and was introduced on July 1, 1979.
It had an 8-bit external  data bus instead of the 16-bit bus of the 8086. The 16-bit registers
and the one megabyte address range were the same The original IBM PC was based on
the 8088 chip.

The Intel 8042 was an 8-bit embedded controller. It has a modified Harvard Architecture
with internal (2k x 8) or external program ROM and 256 bytes of internal RAM. The I/O
is mapped into its own address space, separate from programs and data. It has a memory
efficient one-byte instruction set, and mature development tools. The 8042 is also used in
the IBM AT keyboard.
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The  Hero-2000  used  a  new  bus-based  architecture  based  on  Heath's  PC-compatible
computers.  It was similar  to the S-100 bus in timing and signal definitions,  but used
different connectors. The cards were 5" x 11", compared to AT standard cards of 4" x
13". The connector was totally different, being a unique 72-pin configuration.  The bus
provided 12 card slots. Prototyping was relatively easy to do. The next generation of the
system would most certainly have used a standard pc bus architecture, and evolved into a
Windows-based system. The H-2000 used a customized version of MS-DOS.

Two RS-232 ports were provided with, again, cassette-based storage. A 5 1/4 inch floppy
was available, but was both heavy and power-hungry.

We marveled at how far the architecture had advanced from the Hero-1 model (and the
Hero-Jr), and praised the open architecture, allowing new hardware and software to be
developed. The H-2000 was a pricey unit, and sales would never justify the development
expense. In fact, Heath would not last too much longer as an electronics kit manufacturer,
as the new breed of experimenter was not into that aspect of the hobby.

The development of the hardware and software was only one aspect of a Heath design.
The dummy-proof instructions for assembly needed to be developed and tested, and a
series of debugging and test procedures were required. The parts had to be kitted and
packaged. For any one who ever built a Heathkit, the effort that went into the little details
behind the scenes was apparent.

I regret never having purchased the 2000 model. I did do some design work with add-in
hardware, and used a friend's model for testing around 1992. The integrated circuits in
the H-2000 were standard NMOS parts, and could be replaced with their more costly
CMOS equivalents for reduced power consumption. For example, the 8088 CPU running
at 5 MHz could be replaced with the V20 processor equivalent. Similar swap-outs were
possible with the support chips such as the interrupt controllers.

With stars in our eyes, we went back home to await the units being available in our local
Heathkit  stores.  We had seen what  could be done in the future.  The Hero-2000 is  a
formidable unit, even today. 
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Heathkit tried to reenter the educational robot business in 2007. The HE-ROBOT incor-
porates an onboard computer running Windows XP Professional on a Core 2 Duo Proces-
sor. It was 21 inches tall, weighed 55 pounds, and had a 80 Gigabyte hard drive. It in-
cluded IR sensors, bright LED headlights, and space for custom project circuitry.  It nev-
er appeared on the market, in spite of being a very impressive unit.

Gemini

The Gemini Robot, by Arctec Systems of Columbia, Maryland, was  one of the more
advanced designs of the time. The Gemini robot was built on the smart mobile base. This
was a 4-wheeled system, with one wheel on each side driven, and the other wheel slaved
via a belt.  There were two dc motors,  with optical encoders, and a closed loop servo
control based on the 6502 chip. The smart mobile base received high-level commands
from the main robot controller such as move forward or backward so many units or turn
so many degrees. The robot design was based on multiple 6502 8-bit processors, the same
as used in the Apple-II. At the time, the IBM pc was not yet available, and would prove
to  be  more  expensive  than  the  Apple-II  system.  Also,  the  Apple-II  architecture  was
expandable, with a bus architecture. It was not the fastest or most inexpensive, but it was
the technology of choice at the time.

Introduced in 1975, the  MOS Technologies 6502 became famous as the engine of the
Apple computer. It operated at 1 MHz, and used 4,000 transistors in NMOS technology.
It  operated  from  a  single  5  volt  supply.  The  earlier  6501  was  pin-compatible  with
Motorola’s  6800,  not  software  compatible,  but  ran  into  legal  problems.  Variations
included the 6510 with added I/O ports, the 6507 with a reduced 13-bit address bus. The
chip  was  also  produced  in  CMOS  technology.  It  was  also  used  in  the  Atari  and
Commodore computers.
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The 6522 dual 8-bit parallel port and dual timer chip supported the CPU. The 6502 could
also use 6800 peripherals. It allowed for indirect addressing, which neither the 8080 or
the 6800 had.

As opposed to most of the other 8-bit CPU designs, the 6502 was little endian. It was
limited in registers, having one data register, two index registers, and a stack pointer. It
used a PLA for instruction  decode and sequencing.  Like  most  microprocessor  of the
times, the 6502 had undocumented instructions, certain bit patterns that would do strange
things. In the 6502’s case, the JAM instruction would cause the CPU to freeze, requiring
a hard reset. The 6502 remains a popular architecture, and 16 bit and CMOS variations
were developed. It was second-sourced by GTE, Rockwell, and NCR. At the time, the
same architecture implemented by different manufacturers had different behavior for the
same undocumented instructions. This was exciting, but limited code portability. Gemini
could also do an autodock with its charger. 

RB5X

The RB5Xtm robot was introduced by the RB Robot Corporation of Golden, Colorado in
1983,  preceding  Heath's  popular  Hero  robot  to  market  by  a  few  months.  It  was
microprocessor controlled, and included a serial interface for connection to an external
computer or terminal. It has a charger docking connector on its lower body. The body
was cylindrical, 23 inches high with a 13 inch diameter polycarbonate dome. It weighed
24 pounds, a tight and attractive design. There are two 4-inch diameter drive wheels, and
2 casters.  The RB5X design is attributed to Joe Bosworth,  a founder of the National
Personal Robot Association. Joe was associated with Smartrobots.com, with a new unit
similar in appearance to the RB, but with much more capability.  

The  RB's  computer,  a  National  Semiconductor  8073 8-bit  CPU,  was programmed  in
National's TinyBasic language. The 8070-series cpu's had onboard ram and ROM, 8-bit
wide data, and a 16-bit wide address bus. They included hardware multiply and divide,
and operated from a single +5 volt supply. The nominal memory was 8 kilobytes, with 16
kilobytes additional as an option, using 6116 dram chips. The processor could address a
total  of  64k bytes  of memory,  and the  TinyBasic  interpreter  took up only 2.5 bytes.
SAVVY was developed to be a conversational control language for the RB5X. RCL, the
Robot Control Language, was available for the Apple-II or IBM PC platforms. Three
INS8255 triple 8-bit parallel ports were included for I/O. A radio link was developed to
eliminate the RS-232 cable. 

Eight bumpers along the lower body were tied directly to a CPU-readable register. A
second register's control bits enabled the sonar, the infrared LED, various other LED's
and a horn. A third 8-bit register controlled the two motors via relays, and inputted the
battery voltage, the charger sense, and the sonar return pulse. The robot sensed its charger
via reflected IR at the base. The robot could also follow a line on the floor, which was in
a contrasting color. 

Two batteries  were used with the unit,  both being sealed lead-acid.  One handled the
electronics, and a larger one powered the drive motors and other higher current loads.  
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The RB5X had an optional arm assembly, with its own controller electronics. A manual
control  box was included,  and the arm was also controlled  via  software.  There  were
shoulder, elbow and wrist joints, and a gripper. 

A voice module was also available as an option. This used the SC-01 phoneme synthesis
voice chip, and a General Instruments AY-3-8910 Programmable Sound Generator. 

The RB5X found early acceptance in the K-12 education community, both because it was
appealing to the kids, and was easy to use. A fair amount of courseware was developed,
and studies were done of the effectiveness of RB5X as a teaching tool. 

The RB5X was quite a hit in the education market. It wais still available for a while, but
rather pricey at $3,495 for the basic unit. It stared on the TechTV series, a show aired on
May 3, 2002. There is a Yahoo discussion group on the RB5X, and numerous units may
still be found in schools and with robot enthusiasts and historians. 

The company is still around, http://www.rbrobotics.com/ 

Topo-Bob

The T.O.P.O robot, also called BoB was produced by Androbot, Inc.,  was a concept of
Nolan  Bushnell  of  Atari  fame.  B.o.B  stood for  Brains  on  Board,  a  reference  to  the
onboard microprocessor.  Designed in the 1980's, it  was targeted to the consumer and
educational  markets.  It's  development  system  was  an  Apple-II  or  a  Windows-95/98
computer. It had its own programming languages (Apple-II BASIC, Logo, or Forth), but
suffered from the lack of sensors. It entered the market in 1983. T.O.P.O was constructed
of molded plastic with 2 drive wheels, and stood 36" tall. Arms on Topo 1 and 2 would
fold out, but there were no hands or grippers. Topo 3 didn't have an arm..

Topo used three of the Intel 8031 embedded 8-bit processors. This was a rom-less version
of the popular 8051. This was a single chip cpu with memory and I/O. They had serial
I/O plus dual timers, 4k of ROM, and 128 bytes of RAM. They operated up to 16 MHz,
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Communication was via a radio or infrared transmitter attached to a personal computer.
Topo 2 and 3 used an infrared transmitter, and could be controlled by a four-way pad on
the top of their head that also served as the infrared receiver.

In  its  final  versions,  Topo  included  a  text-to-speech  processor,  so  that  users  could
program  their  robots  to  speak.  A  fourth  model  was  made  but  it  never  went  into
production  It was more like the BoB (Brains On Board, a unreleased robot that was
produced after the Topo series) robot than a Topo. 

Another  member  of  the  Androbot  family  was  the  F.R.E.D.,  the  Friendly  Robot
Educational Device, a short, squat robot only 12 inches high. Like the original Terrapin
Turtle (designed for Logo), Fred had a pencil. He also had a voice synthesizer with a 45
word vocabulary. He could act as a fairly elaborate plotter, moving around a large sheet
of paper. FRED cost $350 in 1983.
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Battlebots

BattleBots was an offshoot of the original American version of  Robot Wars,  a British
game show modeled on a US-based competition of the same name. It was broadcast on
BBC Two from 1997 until 2003, with its final series in 2003 and 2004.  In 2003, the
enthusiasts themselves formed The Fighting Robot Association and with their associated
event organizers, carry on participating in competitions for new audiences.

The series involved teams of amateur and professional robot builders who made their
own robots to fight against each other in both friendly and tournament matches. As well
as fighting each other, they had to avoid the "House Robots", which were not bound by
the same weight or weapon limits as the contestants. It should be noted that the robots in
these instances are directly radio-controlled, and are best described as tele-robots.

BattleBots is an American company that hosts robot competitions. BattleBots is also the
name of the television  show created from the competition  footage.  BattleBots  Inc.  is
headquartered in Vallejo, California and holds most of its competitions in San Francisco.
In  a  BattleBots  event  the  competitors  are  remote-controlled  armed  and  armored
machines, designed to fight in an arena combat elimination tournament. If both combat
robots are still operational at the end of the match the winner is determined by a point
system based on damage, aggression, and strategy. The first season of Battlebots aired in
August 2000. 

The Battlebots events had a loyal following, but had its final episode  in 2011.

PDA-based robotics

Personal Digital  Assistants (PDA's) such as the Palm Pilot had enough computational
capability to handle small,  well-defined robot tasks. They had the advantage of being
low-power and moderately low-cost, but lacked many of the standard interfaces. They did
have built-in  communication  capability,  and this  made them ideal  for  swarms of  co-
operating mini-robots. The limited input-output capability of PDA's made them less than
ideal  platforms  for  robots,  but  their  modern  replacements,  tablet  computers  can
sometimes be used on robot platforms. 

Evolutionary Approaches

This section discusses some follow-on approaches to robot platforms for personal use.

Lego Mindstorms

The  Lego  Group  provides  a  line  of  programmable  robotics  components,  including
motors,  sensors,  cables,  mechanical  parts,  software,  and  controllers.  These  were
introduced in 1998, and have been continually updated. 

The Mindstorm kits are marketed as an educational tool, with a partnership with MIT
Media Lab. The ROBOLAB software was developed at Tufts University, and is based on
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the National Instruments LabView software. Standard programming languages such as c,
c++, Forth, Visual Basic, and Java can also be used. 

The first generation Mindstorms used a 8-bit controller, the Robotic Command Explorer
(RCX), based on the Hitachi H8. It had 32 kilobytes of memory. A Mac or pc can be used
as the development computer, and the interface link is infrared. The NXT units use an
ARM-7 cpu. Multiple RCX units can communicate and interact. Each has three sensor
input ports and three more output ports. It is designed for battery power. 

A USB webcam is also available. This is used with the Vision Command software, which
runs basic detection algorithms. 

The Mindstorms NXT model of 2006 has three servo motors and sensors for sound, light,
touch, and an ultrasonic ranger. Bluetooth short-range radio is also available. NXT-2, in
2009, featured a color sensor, and the controller supports floating point operations. 

VEX

The  Vex  systems  is  a  family  of  robotics  parts  including  sensors,  structure,  motors,
mobility systems such as wheels and treads, and controllers. World-wide competitions
are held for robots using the Vex kits. The first was in 2005. Vex robotics is heavily into
the classroom market.

Roomba

The Roomba is an autonomous robotic vacuum cleaner sold by iRobot. Under normal
operating  conditions,  it  is  able  to  navigate  a  living  space  and  its  obstacles  while
vacuuming the floor. The Roomba was introduced in 2002; as of January 2008, iRobot
claims that over 2.5 million units have been sold. Several updates and new models have
since been released that  allow the Roomba to better  negotiate  obstacles and optimize
cleaning. 

More interesting, the Roomba is sold without the vacuuming part. This provides a low-
cost robotics platform. The interfaces to the build-in controller are easily accessed. An
ARM-7 processor is used for control.

Roombas come with a Mini-DIN connector supporting a TTL serial interface; third-party
adapters are available to access the Roomba's computer via Bluetooth, USB, or RS-232
(PC/Mac  serial).  The  Roomba  Open  Interface  (formerly  "Roomba  Serial  Command
Interface") API allows programmers and roboticists to create their own enhancements to
Roomba. Several projects are described on Roomba hacking sites.

In  response  to  this  interest,  the  company  manufactures  the  iRobot  Create,  with  the
vacuum cleaner motor replaced by a "cargo bay" for mounting devices like TV cameras,
lasers, and even otherwise non-mobile robots. The Create provides a greatly enhanced,
25-pin interface providing both analog and digital bidirectional communication with the
hosted  device.  It  can  then  be  used  as  the  mobile  base  and  wireless  interface  for
completely new robots.
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Robosapien

Robosapien, introduced in 2004, is a popular anthropromorphic robot toy with advanced
features. It has arms and grippers, and could actually throw objects. It had a voice unit as
well. Supposedly, over 1.5 million units were sold. 

At the German Open 2005 tournament two teams of three RoboSapiens  played the first
Soccer match of humanoid robots worldwide. A pda was included in the robot for the
vision system. An advanced version, the Robosapien X can be controlled by an Apple
tablet. 

The robot has a loyal following and active development community.

Reference:
http://www.robocommunity.com 

Enabling Technology
The deployment of Personal robots is enabled by rapid advances in technology. These
include  enhanced  computational  and  communication  capabilities,  new materials,  new
power sources, and the commoditization of advanced technology. Moore's law continues
to enhance the capability of the technology,  while  simultaneously lowering the price.
Building-block modules of increasing complexity can be used at the college, high school,
and elementary level.

Smart Sensors, and Sensornets

Smart sensors include embedded processing. The IEEE Standard 1451 covers functions,
communication protocols, and formats for smart sensors. Networked and wireless sensors
are also covered. Moving the processing closer to the sensor offloads this task from the
main computer, freeing up resources for other tasks. Sensor fusion is also applicable. This
is the merging of inputs from different sensor types to achieve a better knowledge of a
situation or event. 

A group of sensors working together can be organized into a network. These can be an
array of similar or identical sensors, or a group of sensors using different technologies to
gather a more complete perspective of the sensed item of interest. The sensor network
can be wired or wireless. The detection devices monitor the local conditions and perform
a small local area surveillance, collect data, and translate the acquired raw data to usable
information. The network can be rigidly preplanned, or ad-hoc and self-organizing. This
latter approach involves swarms of sensors, not all of which need to be the same.

Sensornets are groups of autonomous (smart) sensors, distributed over a certain space.
They are connected  in  a  node-network architecture.  The system can be wired,  but  is
usually wireless, for convenience. Sensor nets have been used, for example, to monitor
forest fires, and water quality.  These little sensor systems have to be inexpensive, and
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have  low power  consumption.  Loss  of  individual  nodes  does  not  greatly  impact  the
system. A mobile robot platform might be a node on a sensor-net. 

Internet, and IoT

The Internet of Things is built upon web-accessible embedded systems. More and more
embedded systems are on the web. This allows to integrate cheap embedded devices with
ubiquitous  web services,  accessible  with wireless technologies.  An example  might  be
smart electric meters. Smart devices, including rovers, can access data, provide data, or
access services.

To make use of this concept, we need uniquely identifiable objects such as smart sensors,
smart actuators, smart platforms. What is the identity scheme? The Uniform Resource
Locater  (URL) approach can be adopted  We also need advanced connectivity to the
Internet,  which provides distance-insensitive world-wide connectivity. These are large
areas of the Earth's surface where the Internet does not reach, but satellite links can be
used,  although this  is  an  expensive  approach.  The polar  regions  enjoy good satellite
communications due to a series of polar orbiting spacecraft. 

This whole thing is just getting started as of 2014. There may now be more “things” on
the Internet than people. There is a huge ecosystem of devices, talking to cloud servers,
and among themselves. This reduce the reliance on people (who needs us anyway?).

Cloud servers  allow access  to  “unlimited”  datasets  and resources.  The latest  trend is
cloud robotics, where a connected mobile platform can offload computational and storage
resources by having a good communications link. 

The connectivity is enabled by the .net framework, which is open source. This allows the 
embedded device to be a http client. The .net framework supports most of the embedded 
computational architectures, including the popular Arduino. 

Very-low-cost, high-performance microprocessor-based embedded systems enable wide
applications. Most of these boards, complete 32-bit computers with memory and I/O cost
less  than  $50.  Add-on  boards  provide  GPS  location  finding,  wifi  and  bluetooth
connectivity, 3-axis gyros, etc.

Free and open source software and collaborative development environments enhance the 
deployment process. There are standard software interfaces for communication protocols.

Mobile platforms

An increasing  number  of  off-the-shelf  inexpensive  platforms  allow  the  person  robot
builder to focus on the electronics and software. These platforms are tracked or wheeled,
they  float  or  submerge,  or  can  hover  or  fly.  Many  radio-controlled  models,  boats,
submersibles,   electric  aircraft,  cars, and trucks are readily available and inexpensive.
These  serve  as  the  mobility  platforms  for  integrating  computational,  sensor,  and
communication packages. 
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Interfacing the motors and actuators of the various devices to the onboard computer is
relatively  simple.  The computer  works  with  low voltages  and currents,  and provides
control signals. We need a motor driver (chip, board) to provide the power to the motors.
Generally, the computer controller has to provide a direction bit (forward, backward), and
a pulse-width modulation (pwm) signal that sets speed. That's for dc motors. There are
also servo actuators. AC motors are generally not found on mobile robots, because the
onboard power source is dc batteries. You can convert, but there is an efficiency issue. 

Pulse width modulation control is typically used for motor speed control. In this scheme,
the width of a pulse determines the duty cycle of the motor, from 0 to 100%. The pulse
repetition rate must be greater than the motor’s inertia will allow it to see. Typically, this
works well with 1 kilohertz, although systems up to 100 KHz are used. During the period
of time when the pulse is not active, the back-emf (electro-magnetic force) of the motor
can be measured as an indicator of load, and the next pulse adjusted accordingly.

Today, small servo systems developed for model aircraft and cars are cheap and plentiful.
These normally use radio links as a control mechanism. The system consists of an electric
motor and a variable resistor for position feedback. The radio link sends a PWM signal,
where the width of the pulse indicates  a position command. The feedback allows the
servo to hold the commanded point. The standard servos used in radio controlled models
use a 50-Hertz frame rate. Each pulse has a 20-millisecond width. 

The actual mechanism may be capable of 90, 180, or possibly 360-degree rotation. The
system was originally developed as analog (continuous), but is now digital  (discrete).
Interfaces  between  servo systems  and standard  computer  interfaces  such as  USB are
available.

Solenoids are linear motion devices using a coil and magnet. They are used for actuating
valves, for example. They require a simple application of voltage for operation. Working
against a spring, a fairly accurate position can be maintained, at the cost of continuously
applied current. 

Feedback from an actuator  to the control computer  can be provided by a sensor. For
example,  a odometer  measures  the distance the driven wheel has turned. The sensor-
controller-actuator loop is essential for correct control 

Advanced Battery technology

Batteries  have  gotten  better,  due  to  new applications  in  hybrid  and full-electric  cars,
small electric aircraft and boats, and cell phones. 

Rechargeable  batteries  in  new chemistries  are  also  the  outgrowth of  hybrid  and  full
electric  vehicles.  The energy density  is  very high.  Technologies  like lithium-polymer
(LioP)  have  created  expanded  the  operating  life  of  equipment  before  recharging  is
required, and allowed for solar recharge. These types of batteries were used in consumer
electronics by 1995.
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They  also  have  the  advantage  of  being  lightweight,  and  they  also  provide  a  higher
discharge rate (greater  current)  than other battery technologies.  However,  overcharge,
over- discharge, and penetration can result in explosion. Special charging  circuits are
required, as well as temperature and discharge current monitoring.

It is relatively simple to monitor the battery voltage and current. You can integrate the
current to get the energy usage, and tell when the battery needs recharging. It can also
give you an indication of a stuck mechanism.

Don't  let  me scare  you  when I  say “integrate.”  No calculus  needed.  Just  add up the
current measured for a period of time. Temperature of the battery pack is also sometimes
a concern. Check to see if the battery is exothermic (gives off heat; gets hot) when it is
charged or discharged. In one case, where we were working on a Greenland robot, we
had to keep the batteries from freezing with the waste heat from the computer. 

Embedded processors

Advances  driven  by   cellular  phones  and  data  systems  have  made  available  small
powerful processors that rival a datacenter of a few years back. They are designed for
communication, and include a variety of interfaces. The devices are multicore, meaning
there is more than one cpu. They can include specialty cores such as floating point or
digital  signal  processing.  They  have  memory  integrated  with  the  cpu.  They  support
analog as well as digital interfaces. The boards tend to be deck-of-cards size or smaller,
and typically cost under $50. Some examples include Arduino,  Maple, Raspberry  Pi,
and Beaglebone..

This section presents and discusses some “real-world” embedded systems, at  both the
chip and system-level, that can be applied for robots.

Arduino

The Arduino is a simple open-source single-board microcontroller. The hardware consists
of a simple open hardware design for the Arduino board with an Atmel processor and on-
board I/O support. The software support includes a standard compiler and a boot loader
that runs on the board, along with numerous libraries of code.

Arduino  hardware  is  programmed  using  a  language  similar  to  C++  with  some
simplifications and modifications, and an IDE.

The project began in Italy in 2005 to produce a device for implementing student-built
design projects less expensively. By mid-2011, more than 300,000 Arduino boards had
been shipped. 

An Arduino board consists of an 8-bit Atmel AVR microcontroller or an Atmel 32-bit
ARM.  An important  aspect  of  the  Arduino  is  the  standard  way  that  connectors  are
arranged, allowing the CPU board to be connected to a variety of interchangeable add-on
modules called shields. Shields allow for interfacing with sensors and actuators, as well
as  general  I/O.  Most  boards  include  a  5-volt  linear  regulator  and  a  16  MHz crystal
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oscillator  although  some  designs  dispense  with  the  on-board  voltage  regulator.  An
Arduino's microcontroller comes with a boot loader that simplifies uploading of programs
to the on-chip flash memory.

Boards are programmed over an RS-232 serial connection. Serial Arduino boards contain
a simple inverter circuit to convert between RS-232-level and TTL-level signals. Newer
Arduino boards are programmed via serial communications over USB. 

The Arduino board brings out the microcontroller's I/O pins for use by external circuits. 

The Arduino IDE is a cross-platform application implemented in Java. It is designed to
introduce programming to newcomers unfamiliar with traditional software development.
It includes a code editor with features such as syntax highlighting, parenthesis matching,
automatic indentation, and is also capable of compiling and uploading programs to the
board with a single click. There is generally no need to edit makefiles or run programs on
the command line.

The  Arduino  IDE comes  with  a  C/C++ library  called  "Wiring",  which  makes  many
common  input/output  operations  much  easier.  It  uses  the  gnu  toolchain  and  AVR
libraries. The Atmel development Studio can also be used. Arduino programs are written
in a variant of c/c++. There is a large ecosystem of Arduino code available on the web.

The Arduino hardware reference designs are distributed under an Open Source Creative
Commons Attribution Share-Alike 2.5 license and are available on the Arduino Web site.
Layout and production files for some versions of the Arduino hardware are also available.
The source code for the IDE and the on-board library are available and released under the
GPLv2 license. The Arduino design has influenced many other similar devices.

The ARM processor  has  taken an  impressive  place  in  the  embedded  microcontroller
world. The Roomba  is based on the ARM architecture.

The Stellaris LM3S9B92 Evalbot Robot Evaluation Board is an ARM-based architecture
with an embedded controller, motors, sensors, power and communications. The device
has usb connectivity to a host development system. Three AA size batteries power the
platform. It is priced around $150.

The processor, the TI LM3S9B92 microcontroller chip uses the ARM Cortex-3 core plus
the Thumb-2 instruction set. It is a member of TI’s STellaris product family. It imple-
ments single-cycle hardware multiply and divide, and supports unaligned data access. It
has separate buses for instructions and data. Interrupt handling is deterministic, always
being 12 cycles. Memory protection is provided. The chip is optimized for single-cycle
flash memory. It supports a 80-MHz clock. It has a 24-bit integrated system timer, a vec-
tored interrupt controller with an NMI and dynamically re-prioritizable interrupts.

The microcontroller includes 96 kBytes of single cycle RAM on chip and 256 kBytes of
single cycle flash. Flash blocks of 1-kbyte in size can be marked as read-only or execute-
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only. The I/O can support 10/100 Ethernet, 2 CAN controllers, USB 2.0, three UART’s,
dual I2C, and dual synchronous serial. There are four 32-bit timers, eight PWM’s, two
watchdog timers, and up to 65 general purpose I/O’s. Two quadrature encoder inputs are
provided for motor feedback. There are two 10-bit A/D’s with 16 shared channels. In ad-
ditional, there are three analog comparators that can generate an interrupt. JTAG is sup-
ported.

The robot platform enhances this with a connector for a MicroSD card for bulk storage,an
audio codec with speaker, using the I2S connection, and RJ-45 ethernet connector, future
expansion for wireless, a small OLED display,  two dc motors, wheel rotation sensors,
bump sensors, and a variety of other sensor units that can be added.

The software environment, hosted in an external pc, is based on one of five industry stan-
dard ARM IDE's. 

Reference: www.ti.com/evalbot.

The Raspberry Pi 

The Raspberry Pi is  a small,  inexpensive,  single board computer  based on the ARM
architecture.  It  is  targeted  to  the  academic  market.  It  uses  the  Broadcom BCM2835
system-on-a-chip, which has a 700 MHz ARM processor, a video GPU, and currently
512 M of RAM. It uses an SD card for storage. The Raspberry Pi runs the GNU/linux and
FreeBSD operating systems. It was first sold in February 2012. Sales reached ½ million
units by the Fall. Due to the open source nature of the software, Raspberry Pi applications
and drivers can be downloaded from various sites. It requires a single power supply, and
dissipates less than 5 watts. It has USB ports, and an Ethernet controller. It does not have
a real-time clock, but one can easily be added. It outputs video in HDMI resolution, and
supports audio output.  I/O includes 8 general purpose I/O lines, UART, I2C bus, and SPI
bus.

Maple board

The Maple board,  from LeafLabs  is  an Arduino-derived ARM architecture  using  the
STM32F103RBT6, a 32-bit ARM Cortex M3 microprocessor. It is implemented on a 2 x
2 inch board, the design of which is open source. It operates at 72 MHz, and has 128 KB
of flash and 20 KB of SRAM. There are 43 general digital I/O pins (GPIOs), 15 PWM
pins at 16 bit resolution, and 15 analog input (ADC) pins at 12-bit resolution. It includes
dual SPI peripherals, dual I2C peripherals, seven channels of DMA, and three USART
(serial port) peripherals. There is one advanced and three general-purpose timers, and a
dedicated USB port for programming and communications, which also supplies power.
JTAG support is included. There is a nested vectored interrupt controller (NVIC). The
Maple board is  small  and inexpensive,  yet  very capable,  and a good learned tool for
embedded systems. The associated IDE is hosted on a variety of platforms, including
Windows, Linux, and Apple. It is Open Source, and has extensive libraries. The Maple is
a good and inexpensive board to play with, and develop hands-on experience with the
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technology.  I  use  this  board  in  my  undergraduate  and  graduate  Embedded  Systems
classes.

Beaglebone

The Beaglebone board is open source hardware. It has a 1-gigahertz 32-bit ARM cpu. It
can run operating systems such as Linux, bsd, and Android. It can use flash memory
cards of (currently) 4 gigabytes. It has a series of standard interfaces like usb, Ethernet,
and video, and has expandable I/O. For languages, it supports JavaScript, C, and Python.
Support boards are available with a wide variety of sensors. 

This  board  is  built  around  the  Texas  Instrument's  OMAP3530  system-on-a-chip.  It
includes an ARM Cortex A8 cpu and a TI TMS320C64x+ Digital Signal Processor, and
there is a 2D/3D rendering engine for graphics. It supports usb, RS-232, JTAG, and audio
in/out, as well as an S-video and HDMI port.  There is 256 megabytes of RAM, and 256
Megabytes of flash. It boots from ROM. The original cpu speed was 730 MHz, but the
latest models feature a 1 Ghz cpu. 
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Software

This section discusses software for personal robotic systems. As hardware for robotics
systems becomes more “off the shelf,” the software gets more attention. Good engineers
are not necessarily good programmers.  Software, too,  has become more off the shelf,
with operating systems and extensive libraries of useful routines designed for reuse. 

I have always been a proponent of the robot hosting its own development environment.
Now, there are enough resources on the mobile robot to support this.

There is a variety of off-the-shelf software solutions for the small embedded processors
boards. You don't have to ask, “what language do I program that in?” The choices are c-
like  and  Java-like.  Generally,  you  get  an  Integrated  Development  Environment  that
allows you to stitch together routines from code libraries. Sometimes, you can do this
graphically.  You are also capable of using the traditional coding model, for high level
languages or assembly. There are many third-party development platforms that address
coding across platforms. 

The Integrated Development Environment (IDE) is a software tool, generally hosted on a
pc, to develop, download, ad test code on the target embedded system. The IDE is used to
produce code for embedded systems. This is a set of tools for compilation, debugging,
simulation, and code version control. 

Usually, a rich selection of library routines are provided as well. IDE’s usually include a
source code editor. Some IDE’s support multiple languages. The output of the IDE will
be a code “load” that can be sent to the embedded system, or put into a non-volatile
memory. An IDE, hosted on a desktop machine with a large set of resources, represents a
cross-tool for embedded target code development. Web-based IDE’s are emerging. These
run in a standard browser.

Keep  in  mind,  executing  software  consumes  energy  and  requires  time.  This  can  be
observed and measured.  A key issue is  the development  of a  program style,  and the
development of a programming mindset; specifically. how will I debug this? This is the
Design for Testability approach. It is similar to the Design for Test approach in hardware,
where test points are provided at the design level.

It is critically important to document at development time. You won’t have time later in
the design process. The documentation can flow from requirements to specification to
implementation and test.  In  fact,  it  is  possible  to  write  the documentation before the
software code. It will need to be updated later to match reality, of course. 

Another good practice is to define data structures first, then the processing. We all tend to
focus  on  the  algorithm  first,  but  clever  choices  of  data  structures  will  simplify  the
algorithm.  If  shortcuts  are  required  for  speed  or  space,  be  sure  to  document  your
assumptions, and your violations. 
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Libraries  of  code  to  address  specific  functions;  device  drivers,  and other  software  is
generally available. It is always good to check whether the software function you need
has already be done. It is worth a day of research, downloading, and testing to save time.
However,  readily  available  software  doesn’t  always  fit  your  specific  problem.  It  is
generally poorly documented, and it may contain malware. 

Purchasing software from an established vendor provides some level of trustworthiness
but  doesn’t  guarantee  success.  Look  for  software  modules  and  libraries  that  are
supported. Software tools are also available in proprietary and open source versions.

Open Source versus Proprietary

This  is  a  topic  we need to  discuss  before  we get  very far  into  software.  It  is  not  a
technical topic, but concerns your right to use (and/or own, modify) software. It’s those
software licenses you click to agree with, and never read. That’s what the intellectual
property lawyers are betting on. 

Software and software tools are available in proprietary and open source versions. Open
source software is free and widely available, and may be incorporated into your system. It
is  available  under  license,  which  generally  says  that  you  can  use  it,  but  derivative
products must be made available under the same license. This presents a problem if it is
mixed with purchased, licensed commercial software, or a level of exclusivity is required.
Major government agencies such as the Department of Defense and NASA have policies
related to the use of Open Source software.

Adapting a commercial or open source operating system to a particular problem domain
can be tricky. Usually, the commercial operating systems need to be used “as-is” and the
source  code  is  not  available.  The  software  can  usually  be  configured  between  well-
defined limits, but there will be no visibility of the internal workings. For the open source
situation,  there will  be a  multitude  of  source code modules  and libraries  that  can be
configured and customized,  but the process is complex.  The user can also write new
modules in this case. 

Large corporations or government agencies sometimes have problems incorporating open
source products into their projects. Open Source did not fit the model of how they have
done business traditionally. They are issues and lingering doubts. Many Federal agencies
have developed Open Source policies.  NASA has created an open source license,  the
NASA Open Source Agreement (NOSA), to address these issues. It has released software
under this license, but the Free Software Foundation had some issues with the terms of
the license. The Open Source Initiative (www.opensource.org) maintains the definition of
Open Source, and certifies licenses such as the NOSA.

The GNU General Public License (GPL) is the most widely used free software license. It
guarantees end users the freedoms to use, study, share, copy, and modify the software.
Software that ensures that these rights are retained is called free software. The license
was originally written by Richard Stallman of the Free Software Foundation (FSF) for the
GNU project in 1989. The GPL is a copyleft license, which means that derived works can
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only be distributed under the same license terms. This is in distinction to permissive free
software licenses, of which the BSD licenses are the standard examples. Copyleft is in
counterpoint to traditional copyright. Proprietary software “poisons” free software, and
cannot be included or integrated with it, without abandoned the GPL. The GPL covers the
GNU/linux operating systems and most of the GNU/linux-based applications.

A Vendor’s software tools and operating system or application code is usually proprietary
intellectual property.  It is unusual to get the source code to examine,  at least  without
binding legal documents and additional funds. Along with this, you do get the vendor
support. An alternative is open source code, which is in the public domain. There are a
series of licenses  covering open source code usage,  including the Creative Commons
License,  the  gnu  public  license,  copyleft,  and  others.  Open  Source  describes  a
collaborative environment for development and testing. Use of open source code carries
with it an implied responsibility to “pay back” to the community.  Open Source is not
necessarily free.

The Open source philosophy is sometimes at odds with the rigidized procedures evolved
to ensure software performance and reliability. Offsetting this is the increased visibility
into the internals of the software packages, and control over the entire software package.
Besides application code,  operating systems such as GNU/linux and bsd can be open
source.  The  programming  language  Python  is  open  source.  The  popular  web  server
Apache is also open source.

Languages 

The c language is an ANSI and ISO standard. Many embedded C environments differ
from  pure  ANSI  C,  and  only  provide  subsets  of  the  language.  They  also  provide
extensions which allow more direct  control over hardware. Aspects of C which do not fit
target architecture well are left out.

Java is an object-oriented language with a syntax similar to that of c. The language is
compiled to bytecodes which are executed by a Java Virtual Machine (JVM). The JVM is
hosted on the computer hardware, and is an instruction interpreter program. Thus, the
Java language is independent of the hardware it executes on. The JVM has also been
instantiated directly in hardware. 

The  JVM is  a  software environment  that  allows bytecodes  to  be executed.  There are
standard  libraries  to  implement  the  applications  programming  interface  (API).  These
implement the Java runtime environment. Other languages besides Java can be compiled
into bytecode, notably Pascal, ADA, and Python. JVM is written in the c language. 

The JVM can emulate and interpret the instruction set, or use a technique called Just in
Time (JIT)  compilation.  The  latter  approach  provides  greater  speed.  The  JVM  also
validates the bytecodes before execution.

The bytecode  is  interpreted  or  compiled.  Java  includes  an  API to  make  up the  Java
runtime environment. Oracle Corporation owns Java, but allows use of the trademark, as
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long as the products adhere to the JVM Specification.  The JVM implements a stack-
based architecture. Code executes as privileged or unprivileged, which limits access to
some resources.

Python is a general purpose higher order language. It is open source, and designed to be
highly  readable.  It  comes  with  most  Gnu-Linux  distributions  now.  There  are  many
interpreters and compilers available for Python. It can be used as an object-oriented or
function/procedural language. Python has expressions similar to those of Java, and there
is a large standard library of routines.

In embedded, you are working closer to the hardware. At times, you may need to delve
into assembly language. You may need to write a device driver (horrors!). As opposed to
general languages such as c or Java, the assembly language is unique to the hardware
architecture.  The  concepts  are  generally  the  same  across  assemblers  for  different
architectures. A statement in assembly usually maps directly to one machine language
instruction,  where  a  statement  in  a  higher  order  language  would  result  in  multiple
machine language instructions.

Operating systems

An operating system (OS) is a software program that manages computer hardware and
software resources, and provides common services for execution of various application
programs.  Without an operating system, a user cannot run an application program on
their computer, unless the application program is itself self-booting. And that's the key
for simple applications. You don't need an operating system, but your code has to include
some of its functionality.  In some IDE's the operating system code is attached to you
code, behind your back. You may not be aware its there. Your scheduler module can be a
simple “do” loop. Don't over-complicate things. 

For  hardware  functions  such  as  input,  output,  and  memory  allocation,  the  operating
system acts as an intermediary between application programs and the computer hardware,
although  the  application  code  is  usually  executed  directly  by  the  hardware  and  will
frequently call the OS or be interrupted by it. Operating systems are found on almost any
device that contains a computer. The operating system functions need to be addressed by
software (or possibly hardware), even if there is no entity that we can point to, called the
Operating  System.  In  simple,  usually  single-task  programs,  there  might  not  be  an
operating system per se, but the functionality is still part of the overall software.

An operating system manages computer resources, including:

• Memory.
• I/O.
• Interrupts.
• Tasks/processes/application programs.

The operating system arbitrates and enforces priorities. If there are not multiple software
entities to arbitrate among, the job is simpler. An operating system can be off-the-shelf
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commercial  or open source code,  or the application software developer  can decide to
build his or her own. To avoid unnecessary reinvention of the wheel an available product
is usually chosen. Operating systems are usually large and complex pieces of software.
This is because they have to be generic in function, as the originator does not know what
application  space  it  will  be  used  in.  Operating  systems  for  desktop/network/server
application are usually not applicable for embedded applications.  Mostly they are too
large, having many components that will not be needed (such as the human interface),
and they do not address the real-time requirements of the embedded domain.

Adapting a commercial or open source operating system to a particular embedded domain
can be tricky. Usually, the commercial operating systems need to be used “as-is” and the
source  code  is  not  available.  The  software  can  usually  be  configured  between  well-
defined limits, but there will be no visibility of the internal workings. For the open source
situation,  there will  be a  multitude  of  source code modules  and libraries  that  can be
configured and customized,  but the process is complex.  The user can also write new
modules in this case. 

Operating Systems designed for the desktop are not necessarily suited to the embedded
space. There were developed under the assumption that whatever memory is required will
be available, and real-time operation with hard deadlines is not required. 

Real-time operating systems, as opposed to those addressing desktop, tablet, and server
applications,  emphasize predictability and consistency rather than throughput and low
latencies. Determinism is probably the most important feature in a real-time operating
system. 

A microkernel operating system is ideally suited to embedded systems. It is slimmed
down to include only those features needed, with no additional code. Barebones is the
term  sometimes  used.  The  microkernel  handles  memory  management,  threads,  and
communication between processes. It has device drivers for only those devices present.
The operating systems may have to be recompiled when new devices are added. A file
system, if required, is run in user space. MINIX, as an example of a streamlined kernel,
has about 6,000 lines of code. 

Some example off-the-shelf operating systems include:

Android

The Android operating system by Google has found application in numerous smartphone
and tablet computers since its introduction in 2008. It is an Open Source product based on
Gnu-Linux,  although not  all  of  the  code is  covered  by Open Source  licenses.  It  has
evolved into versions for set-top boxes, robotics, digital cameras, and digital television
applications. Android supports several hardware computing platforms including ARM,
POWER, x86, and MIPS.
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Like Java, Android provides a virtual machine execution engine for a specific hardware
platform. This virtual  machine is termed Dalvik.  It’s  strengths are in memory-limited
systems, and those with hard real time requirements. Android is targeted to user input
from touch, with a screen using icons. In an embedded application, it may have no direct
user interface. Android uses the Gnu-Linux kernel, plus middleware, libraries of code,
and API’s.  The user  community supports  a  large library of applications  for Android.
Android has built-in support for power management.

Real Time and embedded Linux

There are several approaches  to make GNU/Linux a real-time operating system.  One
version  developed  by  FSM  labs,  and  used  by  VxWorks,  is  a  hard  real-time  RTOS
microkernel  that  runs  the  entire  Gnu-Linux  operating  system  as  a  fully  preemptive
process. To address soft real-time, the GNU/Linux kernel can be modified by several
available patches to add non-preemption and low latency, with a deterministic scheduler.

The standard GNU/Linux (or BSD) kernel is not pre-emptable. This means kernel code
runs to completion. The run time is not bounded, which interferes with responding to
time-critical events. It is important to keep in mind that the Gnu-Linux kernel was not
designed for non-preemption, as a true real-time operating system would be. Preemption
has overhead, and influences throughput, usually adversely. There is a real-time Linux
Foundation (.org) that is a good source of information on these topics.

Ubuntu Mobile and Embedded are variations of the Ubuntu Linux distribution for Mobile
Phones, and embedded applications in general.

LynxOS 

The LynxOS RTOS is a Unix-like real-time operating system from LynuxWorks It is a
real-time POSIX operating system for embedded applications. LynxOS components are
designed for absolute determinism (hard real-time performance), which means that they
respond within a known period of time. Predictable response times are ensured even in
the  presence  of  heavy I/O due to  the  kernel's  unique threading model,  which allows
interrupt routines to be extremely short and fast. LynuxWorks has a specialized version
of LynxOS called LynxOS-178, especially for use in avionics applications that require
certification to industry standards such as DO-178B.

QNX
 
QNX is  a  real-time  operating  system based on Unix.  QNX Neutrino  RTOS is  SMP
capable, and supports POSIX APIs. It is not open source.

The  QNX  microkernel  contains  only  CPU  scheduling,  inter-process  communication,
interrupt  redirection,  and  timers.  Everything  else  runs  as  a  user  process,  including  a
special  process  known  as  proc, which  performs  process  creation,  and  memory
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management  by  operating  in  conjunction  with  the  microkernel.  There  are  no  device
drivers in the kernel. The network stack is based on NetBSD code. 

RTEMS

RTEMS is the Real-Time Executive for Multiprocessor Systems, designed for embedded
use, and free and open source. It is POSIX compliant. The TCP/IP stack from FreeBSD is
included.  RTEMS  does  not  provide  memory  management,  but  is  single  process,
multithreaded. Numerous file systems are supported. RTEMS is available for the ARM,
Atmel AVR, and a wide variety of other popular embedded cpu’s and DSP’s. An RTEMS
system is currently in orbit around Mars. 

RTOS

In a real-time system, the timing of the result is as important as the logical correctness.
Embedded  systems  find  themselves  in  these  situations  a  lot.  There  are  two types  of
deadlines, hard and soft, and various scheduling policies to address these. A scheduling
policy should have the ability to meet all deadlines. The scheduling overhead should be
minimal. 

In soft real time, the average performance or response time is emphasized. Desktops and
servers  can  meet  soft  real  time  requirements.  Missing  a  deadline  is  not  necessarily
catastrophic. Embedded examples include an elevator controller, vending machines, gas
pumps,  cash  registers  and  POS,  thermostats,  mobile  phones,  and  a  bike  computer.
Missing a deadline may result in a degradation of service, but not a failure.

In hard real time, on the other hand, critical sections of code have absolute deadlines,
regardless of how busy the system is. Missing a deadline means system failure. Response
times must be deterministic. Examples of hard real time systems include avionics fly-by-
wire system,  antilock brakes, stability control in automotive applications,  and nuclear
power plant safety systems. 

Interestingly, meeting a deadline early may be just as bad as meeting it late. There are
constraint requirements on the response time for the systems. 

We can have systems with the characteristics of both; these multi-rate systems handle
operations and deadlines at varying rates.

Non-Real Time (NRT) systems are fair; they provide resources (time, I/O) to all users or
programs  on  an  equal,  or  pre-determined  priority  basis.  They  can  arbitrate  resource
allocation  to  maximize  the  number  of  deadlines  met,  or  minimize  lateness,  or  some
combination. Everyone gets a turn. NRT systems have high throughput and fast average
response.
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File Systems

A file system provides a way to organize data in a standard format. An embedded system,
like a digital  camera,  can store and organize its  data  (photos) and exchange the data
directly with a computer. The file system stores the data, and metadata (data about the
data) such as date, time, permissions, etc. Some operating systems support multiple file
systems. 

The important thing about a file systems for embedded systems is, don’t reinvent the
wheel!  There  are  many good file  systems  out  there,  and the  provide  a  compatibility
across platforms. 

The DOS file system

The legacy disk operating  system (DOS) file  structure is  built  upon linked lists.  The
directory file contains lists of files and information about them. It uses a 32-byte entry per
file,  containing  the  file  name,  extension,  attributes,  date  and  time,  and  the  starting
location of the file on disk. 

The File Allocation Table (FAT) is a built map of allocated clusters on the disk. A cluster
is the default unit of storage. It’s size is a trade-off between efficiency of storage, and
efficiency of access. A size of 256 bytes to 1024 bytes worked well in the early days.
Two copies of the FAT are kept by the system, and these are on fixed locations of the
storage media. 

A directory file has entries for all of the files on the disk. The name of the file is in 8.3
format, meaning an 8 character file name, and a 3-character extension. The extension tells
the type of the file, executable program, word processing, etc. By DOS convention, when
a file is erased, the first character of the name is changed to the character E516. The data
is not lost at this point. If nothing else happens in the mean-time, the file can be un-
erased,  and recovered.  However,  the E5 signifies  the space the file  occupied  is  now
available for use.

Various file attribute bits are kept. The file can be marked as read-only, hidden, reserved
system type, and bits indicate a directory field, a volume label (name of a storage volume,
like, “disk1”), and whether the file has been archived (saved). There is a 16-bit date code
in the format (year-1980)*512 + month * 32 + day. (thought exercise – when do we have
a problem?). The starting cluster number in a directory is kept as a word value. This
limits us to 216 clusters. 

The FAT was originally 12-bits, but later extended to 16. Eventually, this was extended
to 32-bits for Windows, and is no longer DOS compatible. Entries in the FAT map the
clusters on the storage media. These indicate used, available, bad, and reserved clusters. 

Linux supports the various versions of the .ext file family. 
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Apps

The  applications,  the  device  software  is  limited  only  by  imagination.  The  software
development tools are there, and the languages are available. What language should you
use to produce software for the robot? Doesn't really matter. What computer languages
do you know? C, Java, Python, Logo  – whatever you want. Actually, don't use Cobol.

An Architectural Model

NASREM

The NASA/NBS Standard Reference Model for Telerobot Control System Architecture
was evolved as a model for the implementation of advanced control architectures. 

The NBS architecture is a generic framework in which to implement intelligence of a
telerobotic device. It was developed over a decade as part of a research program in indus-
trial robotics at NBS (now. NIST) in which over $25 million was spent. The NBS pro-
gram involved over fifty professionals and extensive facilities, including robots, a super-
computer, mainframes. minicomputers. microcomputers. LISP machines. and AI work-
stations. This model, designed originally for industrial robots. is the mechanism by which
sensors. expert systems. and controls are linked and operated such that a system behaves
with some measure of autonomy, if not intelligence. 

Systems designed from this model perform complex real-time tasks in the presence of
sensory input from a variety of sensors. They decomposes high level goals into low level
actions. making real-time decisions in the presence of noise and conflicting demands on
resources. The model provides a framework for linking artificial intelligence. expert sys-
tem. and neural techniques with classical real-time control. Sensors are interfaced to con-
trols through a hierarchically-structured real-time world model. The world model inte-
grates current sensory data with a priori knowledge to provide the control system with a
current best estimate of the state of the system. 

NASREM is a generic hierarchical structured functional model for the overall system.
The hierarchical nature makes it ideal for telerobot systems, and for gradual evolution of
the system. The model also provides a set of common reference terminology, which can
enable  the  construction  of  a  database.  It  defines  interfaces,  which  allows  for
modularization. The model allows for evolutionary growth, while providing a structure of
the interleaving of human:robotic control. 

NASREM's 6-level model operates from a global memory (or database). At each level we
have  three  processes,  sensory  processing  world  modeling,  and  task  decomposition
(execute). At the very lowest level, we have the raw sensors and the servo systems. Going
up from that, we have the primitive level, the elementary move level, the task level, the
service bay level, and the mission level. At the servo level, we would find cameras, and
their  associated  pan/tilt  control  as  well  as  mobility  and  joint  motor  control,  with
associated position feedback. At the primitive move level,  we would find the camera
subsystem, the arm, the mobility subsystem, and the grippers. At the elementary (or e-)
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move level, we would find systems such as perception or manipulation. At the task level,
we might locate the entire telerobotic system. 

The world modeling process starts with a sparse database. Sensor data, appropriate to the
level flows in, and there might be a capability for data fusion. A task planner task can
make “what-if” queries of the world model (which is state-based). The modeling task
uses  a  global  database  of  state  variable,  lists,  maps  and knowledge bases  to  allow a
modeling  process to  update and predict  states,  to  evaluate  current  states  and possible
states, and to report results to a task executor task. The World model, evaluates states,
both existing states as evidenced by sensor data, and possible states, as postulated by the
task planner. 

The timing and time horizon of the various levels of the model is are vastly different. The
servo level  operates  on  the  millisecond  level,  the  primitive  level,  at  10's  to  100's  of
milliseconds, and the e-move level at about a one second update interval. It would have
about a 30 second planning horizon. The task level would have update interval on the
order  of  seconds to  10's  of  seconds,  with a  planning horizon in  the 10's  of  seconds.
Moving up, the service by level would update in the 1's of seconds, with a planning
horizon the order of minutes to 10's of minutes. Finally, the mission level might update
on the order of minutes, with a horizon of an hour.

The servo level  would accept  Cartesian trajectory points from the next  level  up,  and
transform these to  drive voltages  or  current  for  the  mechanisms.  The Primitive  level
would accept pose (or collection of joint angles and positions) information from the next
higher  level,  and generate  the  Cartesian  trajectory  point  to  pass  down the  hierarchy.
These involve dynamics calculations.  The e-move level would accept elementary move
commands  and  generate  pose  commands,  after  orientations  in  the  coordinate  frame,
singularities, and clearances. It uses simple if-then state transition rules. The task level,
the  one  the  telerobot  would  be  located  at,  accepts  task  commands  (from the  human
operator), does subsystem assignments and scheduling, and generates a series of e-moves.

Real Time Control System (RCS)

RCS evolved form NASREM over decades, starting in the 1970's It is currently at RCS
Level  4.  RCS is  a  Reference  Model  Architecture  for  real-time  control.  It  provides  a
framework for implementation in terms of a hierarchical control model derived from best
theory  and  best  practices.  RCS  was  heavily  influenced  by  the  understanding  of  the
biological  cerebellum. NIST maintains a library of RCS software listings,  scripts  and
tools, in ADA, Java, and C++.

An abstraction, the perfect joint accepts analog or digital torque commands, and produces
the required torque via a dc motor. It also provides state feedback in the form of force,
torque, angle or position, (depending on whether the joint configuration is Cartesian or
revolute), and possibly rate. The perfect joint includes a pulse width modulator (pwm), a
motor, and possibly a gearbox. Internal feedback and compensation is provided to com-
pensate for gearbox or other irregularities such as hysteresis or stiction, For example, the
torque pulses common to harmonic drives can be compensated for within the perfect
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joint. The perfect joint is part of the lowest NASREM level. The processing provided the-
oretically achieves a "perfect" torque, where the outputted torque matches the command-
ed torque. 

The Individual Joint Controller (IJC) implements a simple control law to allow joint by
joint operation of the manipulator. 

The IJC provides a functional redundancy to the higher level telerobot control discussed
below. The IJC accepts inputs from a kinematic ally similar mini-master controller. This
simplifies the computational requirements on the IJC, by removing the need for coordi-
nate transformations. The IJC does not include any dynamic joint coupling compensation.
It basically implements seven parallel, non-interacting control laws, that may be simple
PD loops. For this case, roughly 140 operations per cycle are required. 

The telerobot controller initially implemented the first three NASREM levels, and could
accept commands from a joystick-type element, a mini-master, or higher levels of the
model. This level required a computational capability of several MIPS, and an accuracy
of 32 bits. Floating point capability was assumed. This controller could perform coordi-
nate transformations in real time, although the computation burden argued for a custom
hardware approach to this particular subset of the computations. 

The telerobot control system implemented the first 3 (of 7) levels of the NASREM mod-
el. Further levels could be added later in a phased evolution of the system. For early sys-
tems, the human operator provided the functionality of the upper control levels. 

Standards

There  are  many Standards  applicable  to  personal  robotic  systems.  These  range from
general computer standards to hardware and operational standards. Why should we be
interested  in  standards?  Standards  represent  an  established  approach,  based  on  best
practices.  Standards  are  not  created  to  stifle  creativity  or  direct  an  implementation
approach, but rather to give the benefit of previous experience. Adherence to standards
implies that different parts will work together. Standards are often developed by a single
company,  and then adopted by the relevant industry.  Other Standards are imposed by
large  customer  organizations  such  as  the  Department  of  Defense,  or  the  automobile
industry. Many standards organizations exist to develop, review, and maintain standards.

Standards  exist  in  many  areas,  including  hardware,  software,  interfaces,  protocols,
testing,  system  safety,  security,  and  certification.  Standards  can  be  open  or  closed
(proprietary).  

Hardware  standards  include  the  form  factor  and  packaging  of  chips,  the  electrical
interface, the bus interface, the power interface, and others. The JTAG standard specifies
an interface for debugging. 
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In computer architecture, the ISA specifies the instruction set and the operations. It does
not  specify  the  implementation.   Popular  ISA’s  are  x86  (Intel)  and  ARM  (ARM
Holdings, LTD). These are proprietary, and licensed by the Intellectual Property holder. 

In software, an API (applications program interface) specifies the interface between a
user program, and the operating system. To run properly, the program must adhere to the
API. POSIX is an IEEE standard for portable operating systems. 

Language standards also exist, such as those for the ANSI c and the Java language.

Networking standards include TCP/IP for Ethernet, the CAN bus from Bosch, and IEEE-
1553 for avionics. 

It is always good to review what standards are and could be applied to an embedded
system,  as  it  ensures  the  application  of  best  practices  from  experience,  and
interoperability with other systems.

The Portable Operating System Interface for Unix (POSIX) is an IEEE standard, IEEE
1003.1-1988.  The  standard  spans  some  17  documents.  POSIX  provides  a  Unix-like
environment  and API.  Various operating  systems are certified  to  POSIX compliance,
including BSD, LynxOS, QNX, VxWorks, and others.

Security

Have you been robo-jacked today? All robotic systems have aspects of security. A user’s
personal data on cell phones is vulnerable. The data on your computer is at risk. Your
robot systems cost time and money to build and deploy – it needs protection as well. We
are not so much worried that your creation will turn against you, as that it will be used
against you and your data. 

Robot  systems  operate  in  an  unfriendly  world.  They  are  available  to  attacks  from
hacking, viruses and malware, theft, damage, spoofing, and other nasty techniques from
the desktop/server world. GPS systems can be hacked to provide incorrect location or
critical  time  information  Cell  phones  and  tablets  are  connected  wirelessly  to  large
networks.  A bored  teenage hacker  in  Europe took over  the  city  Tram system as  his
private full-scale railroad, using a TV remote. What about the teenager in an internet café
is a third-world country. They would derive much amusement from making your robot
run amuck. 

Some of these issues are addressed by existing protocols and standards for access and
communications  security.  Security  may  also  imply  system  stability  and  availability.
Standard security measures such as security reviews and audits, threat analyses, target
and threat assessments, countermeasures deployment, and extensive testing apply to the
embedded domain.
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The completed functional system may need additional security features, such as intrusion
detection,  data  encryption,  and perhaps  a  self-destruct  capability.  Is  that  self-destruct
capability secure, so not just anyone can activate it? All of these additional features use
time, space, and other resources that are usually scarce in small embedded systems for
robotics. 

Techniques  such as  hard  checksums  and  serial  numbers  are  one  approach  to  device
protection.  Access  to  the  system  needs  to  be  controlled.  If  unused  ports  exist,  the
corresponding device drivers should be disabled, or not included. Mechanisms built into
the cpu hardware can provide protection of system resources such as memory. 

Security  has  to  be  designed  in  from the  very  beginning;  it  can’t  just  be  added  on.
Memorize this. Even the most innocuous embedded platform in a small robot can be used
as a springboard to penetrate other systems. 

Safety

Mobile Robotic systems operate in the real world, and the real world can be scary. We
need to be aware of the hazards that a mobile robot systems can present to others, and the
hazards it  itself  can be subject to.  We have covered some of those in the section on
security.  A good starting  point  for  robotic  safety comes  from a science  fiction  book
published in 1942 by Isaac Asimov. In his short  story,  Runaround,  he introduced his
Three Laws of Robotics,  which have stood the test of time. From their introduction in
speculative fiction to their influence on industrial systems, they are well-thought-out.

And, they are:

 A robot may not injure a human being or, through inaction, allow a human being
to come to harm. 

 A robot must obey the orders given to it by human beings, except where such 
orders would conflict with the First Law. 

 A robot must protect its own existence as long as such protection does not conflict
with the First or Second Law.

Asimov went on to write many robotics stories, where the effect of the three laws were
seen in some unusual situations. He actually attributes the formulation of his laws to a
discussion with John Campbell  in 1940. Asimov always assumed the robots he wrote
about had inherent safeguards. 

So, based on Asimov's laws as a starting point, we can derive some requirements for our
personal robotic systems. First, to not harm a human, the robot must have passive and
active  safety  systems.  It  must  be  aware  of  humans  within  its  reach  or  task  space.
Speaking as one who was pinned to a wall by a 350 pound robot cart, a human-sensor is a
good idea. If you are operating your quadcopter, it is not a good idea to fly it into another
person  (dog,  car...).  The  flow-down  safety  from  the  3-laws  continue.  Consider  safe
design, and safe operation at the beginning. 
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Where's the dream?
Has there been any progress in the last thirty years in the field of personal robots? Yes,
but...the R2D2 functionality still alludes us. The computer power is available. Walking,
swimming,  flying  and  manipulating  subsystems  are  off-the-shelf.  Communications
technologies such as WiFi and bluetooth are readily available. Memory is, for practical
purposes, free. Secondary storage using low-power solid state disks is readily available
and cheap. Access to the Web and the Cloud is enabled by wireless networking. This
means a lot of the intelligence does not need to be hosted onboard the robot. Batteries are
much better with higher energy density with such units as Lithium-ion. 

Development systems and languages remain a hurdle, but are getting better. The parts
and subsystems are available, and the interest level is, if anything, higher that it ever was
before.

Where are the drivers and the enablers today for personal robotics?

Today (circa 2014) with better, cheaper, and more capable building blocks, colleges and
high  schools  are  working  on  their  own satellites  (Cubesats)  as  well  as  high  altitude
balloon missions.  They are deeply into robotics.  Some of the programs are discussed
below.

Google Lunar X-Prize

This is a lunar robotics competition, organized by  the X-Prize Foundation in 2007, and is
valid through 2015. It requires a team to develop and demonstrate a robot on the moon
that travels at least 500 meters, and transmits back high definition video. The prize for
this is $20 million. If accomplished, this would be the first vehicle to operate on the lunar
surface since 1976,  and the  first  non-governmental  effort.  Another  goal  is  to  capture
images of Apollo hardware on the moon, verifying the presence of water ice, or surviving
through the 2-week long lunar night.

This  effort  was  originally  to  be  funded  by  NASA,  but  that  would  have  limited  the
competition to United States Teams. The X-Prize Foundation, funded by Google, has no
such  restrictions.  More  than  thirty  international  teams  are  officially  working  on  this
effort.

Reference:
Alicia Chang (2007-09-14).   "Google to Finance Moon Challenge Contest"  . . Washington
Post

STEM

STEM stands for science, technology, engineering, and mathematics. The STEM fields
are  those  academic  and  professional  disciplines  that  fall  under  the  umbrella  areas
represented  by  the  acronym.  According to  both  the  United  States  National  Research
Council (NRC) and the National Science Foundation (NSF), the fields are collectively
considered core technological  underpinnings of an advanced society.  In many forums
(including political/governmental and academic) the strength of the STEM workforce is
viewed as an indicator of a nation's ability to sustain itself. 
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The Science, Technology, Engineering, and Mathematics Education Coalition  works to
support STEM programs for teachers and students at the U. S. Department of Education,
the National Science Foundation, and other agencies that offer STEM related programs. 

FIRST

FIRST (For Inspiration and Recognition of Science and Technology) is an organization
founded  by  inventor  Dean  Kamen  in  1989  to  develop  ways  to  inspire  students  in
engineering  and technology fields.  The organization  is  the  foundation  for  the  FIRST
Robotics Competition, FIRST LEGO League, Junior FIRST LEGO League, and FIRST
Tech Challenge competitions.

The FIRST® LEGO® League is an international competition organized by FIRST for
elementary and middle school students. Each year, a new challenge is announced that
focuses on a different real-world topic related to the sciences. The robotics part of the
competition  revolves  around  designing  and  programming  LEGO Robots  to  complete
tasks. The students work out solutions to the various problems they are given and then
meet for regional tournaments to share their knowledge, compare ideas, and display their
robots. FIRST LEGO League is a partnership between FIRST and the LEGO Group. It
also  has  a  scaled-down robotics  program for  children  ages  6–9 called  Junior  FIRST
LEGO League.

Zero Robotics Competition

This program involves a series of robots already on the International Space Station called
SPHERES  (Synchronized  Position  Hold,  Engage,  Reorient  Experimental  Satellites).
These have a mass of around ten pounds, and a diameter of 8 inches. They use twelve
CO2 thrusters for movement, and are battery powered. They were developed at the MIT
Space  systems  Laboratory  as  a  testbed  for  control,  autonomy,  and  metrology  for
distributed  spacecraft  and  docking  missions.  The  SPHERES  were  inspired  by  the
Training  Remotes  from the  Star  Wars  films.  There  are  three  SPHERES,  in  different
colors.

As a team, they can control their relative their relative position and orientation. They had
been tested aboard KC-135 aircraft flying zero-gravity flight paths, and were delivered to
the International Space Station (ISS) in 2006. 

The NASA/MIT Competition allows teams to develop software for the SPHERES, and
test it in a simulation environment. Selected teams test their software on SPHERES in an
air-bearing  floor  facility.  In  December  2011,  a  few  teams  will  test  their  code  and
algorithms in the SPHERES onboard the ISS.

On your own

Here are some suggested approaches to inexpensive personal robot projects you can do
on  your  own.  Also,  check  local  high  schools  and  colleges  for  robotics  clubs  and
programs. If you are experienced, volunteer as a mentor. If you are starting out new, it is
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good to work with a group of like-minded individuals. First, understand your strengths
and weaknesses. Are you a computer hardware person, a software person, a mechanical
person,  or  none  of  the  above.  Play  to  your  strengths,  but  tackle  your  technical
weaknesses. Take classes, Explore programming environments. See what projects people
are working on, using the web as a resource. To start, you might want to get an electric
radio  controlled  truck,  car,  plane,  quadcopter,  boat,  or  submarine.  That  gives  you  a
platform to start with. Now, what can adding a small embedded computer buy you?

You could work it the other way. Start with a task that you want to robot to do, and
define a platform to do that task.  Robot lawn mower? That's  commercially available.
Service robots for the elderly and disabled? That's an active research area. A telepresense
robot that can allow you to be in two places at once? There are some of those, based on
tablet computers for control. There are no limits here but your imagination. Best of luck.
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Glossary of Terms

Actuator – device which converts a control signal to a mechanical action.
A/D, ADC – analog to digital converter.
ALU – arithmetic logic unit.
Analog – concerned with continuous values.
And – logical operation that is true when both inputs are true.
Android, an Operating system, also a term for a humanoid robot.
Ap – application software, computer program.
Apache – an open source web server.
API – applications programming interface.
Arduino – open source, single board microcontroller using an Atmel AVR (8-bit risc)

 cpu.
ARM – Acorn RISC machine; a 32-bit architecture with wide application in embedded

 systems.
ASIMO – Japanese robot, Advanced Step in Innovative Mobility.
Async – asychronous; 2 processes not sharing the same clock.
AVR – a microprocessor architecture from Atmel.
BASIC – a simple computer language.
Battlebot – Television show featuring remote controlled armed and armored robots.
Baud – symbol rate; may or may not be the same as bit rate.
Binary – using base 2 arithmetic for number representation.
Bit – 2 state element. Smallest element of the binary system. 
Bluetooth – short range radio communications for data.
BoB – personal robot, “brains on board.”
BSD – Berkeley Software Distribution version of the Bell Labs Unix operating system.
BSP – board support package; information and drivers for a specific circuit board.
Bus – data channel, communication pathway for data transfer.
Byte – ordered collection of 8 bits; values from 0-255.
bytecodes – coputer instruction set designed to be executed by an interpreter program.
c – computer language.
CAN – controller area network.
CD – compact disk (optical media).
Chip – integrated circuit component.
Clock – periodic timing signal to control and synchronize operations.
CMOS – complementary metal oxide semiconductor; a technology using both positive

 and negative semiconductors to achieve low power operation.
Codec – coder/decoder.
Control Flow – computer architecture involving directed flow through the program; data

 dependent paths are allowed.
Copyleft – open source license.
Cots – commercial, off-the-shelf.
Courseware – material for a class.
CPU – central processing unit.
Cubesat – a small research satellite (volume = 1 liter), widely used by colleges and
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 individuals.
Dalvik – the Android virtual machine.
DC – direct current.
Device driver – specific software to interface a peripheral to the operating system.
Dram – dynamic random access memory.
Droid – robot.
Drone – unmanned aerial vehicle.
DSP – digital signal processing.
DVD – optical media, “digital video disk” 
Embedded system – a computer systems with limited human interfaces and performing

 specific tasks. Usually part of a larger system. 
Endian – which side of the digital word has the least significant bit.
Eprom – erasable programmable read-only memory.
Ethernet – networking protocol for wired or wireless data networks.
Firmware – code contained in a non-volatile memory.
Flag – a binary indicator.
Flash memory – a type of non-volatile memory, similar to Eeprom.
Flip-flop – device that can be in one of two states.
Floating point – computer numeric format for real numbers; has significant digits and an

 exponent.
FPGA – field programmable gate array.
FPU – floating point unit, an ALU for floating point numbers.
Full duplex – communication in both directions simultaneously.
Gate – a circuit to implement a logic function; can have multiple inputs, but a single

output.
Giga - 109 or 230.

GHz –  giga (109)  hertz.
GPIO – general purpose input output.
GPS – global positioning system (U.S.) system of navigation satellites.
GPU – graphics processing unit. ALU for graphics data.
GUI – graphics user interface.
Hero – a series of robots from heath corporation in the 1980's.
Hotplug – to connect equipment without turning the power off first.
Hz – Hertz, or cycles per second.
IDE – integrated device electronics – an interface for storage devices.
IEEE – Institute of Electrical and Electronic Engineers. Professional organization and

standards body.
Integer – the natural numbers, zero, and the negatives of the natural numbers.
Interrupt – an asynchronous event to signal a need for attention (example: the phone

 rings).
I/O – Input-output from the computer to external devices, or a user interface.
IoT – Internet of Things.
IP – intellectual property; also internet protocol.
IoT – Internet of Things.
IR – infrared, 1-400 terahertz. Perceived as heat.
IPRC – International Personal Robotics Conference.
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iRobot – manufacturer of military and civilian robots.
isa – instruction set architecture.
Java – computer language.
Javascript – a scripting language; usually runs in a browser.
Joystick – human interface device for rotation and direction control. Used in aircraft and

 video games.
JTAG – Joint Test Action Group;  industry group that lead to IEEE 1149.1, Standard Test

 Access Port and Boundary-Scan Architecture.
JVM – Java Virtual Machine – software that allows any architecture to execute Java

 bytecodes by emulation.
Kbyte – kilo (thousand) bytes.
Kernel – main portion of the operating system. Interface between the applications and the

 hardware.
Kilo – a prefix for 103 or 210

lamp – linux, apache, MySQL, Python software suite.
lan – local area network.
Lego – Danish maker of building block toys, now involved in robotics as well.
Linux – open source operating system.
LioP – lithium polymer battery.
Logo – programming language for education and robotics, based on LISP (1967).
LUT – look up table.
Malware – malicious software.
Math operation – generally, add, subtract, multiply, divide.
Mbyte – mega (million) bytes.
MEMS – Micro Electronic Mechanical System.
Metadata – data about data; for example, the date and time embedded in a file.
Metaprogramming – programs that produce or modify other programs.
Metrology – science of measurement.
MHz – mega (million) Hertz.
Middleware – software between the operating system, and the applications. 
Microcode – hardware level data structures to translate machine instructions into

 sequences of circuit level operations.
Mindstorm – robotic building blocks from Lego.
Mips – millions of instructions per second.
Microcontroller – microprocessor with included memory and/or I/O.
Microkernel – operating system which is not monolithic. So functions execute in user

 space.
Microprocessor – a monolithic cpu on a chip.
Milliamp – 10-3 amp.
MIPS – millions of instructions per second; sometimes used as a measure of throughput.
MMU – memory management unit; translates virtual to physical addresses.
Multicore – multiple processing cores on one substrate or chip; need not be identical.
MySQL – open source relational database.
NASA – National Aeronautics and Space Administration.
NASREM -  NASA/NBS Standard Reference Model for Telerobot Control System

 Architecture.
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NBS – National Bureau of Standards, now NIST.
NIC – network interface connection.
NIST – National Institutes of Standards and Technology.
NMI – non-maskable interrupt; cannot be ignored by the software.
NOP – no operation.
NBS - National Bureau of Standards, now NIST.
NVM – non-volatile memory.
OBD – On-Board diagnostics; for automobiles, a state-of-health systems for emissions 

control.
Opcode – part of a machine language instruction that specifies the operation to be

 performed.
Open source – methodology for hardware or software development with free distribution

 and access.
Operating system – software that controls the allocation of resources in a computer.
Or – logical operation whose output is true when either or both inputs are true.
Paradigm shift – a change from one paradigm to another. Disruptive or evolutionary.
Parallel – multiple operations or communication proceeding simultaneously.
Parity – an error detecting mechanism involving an extra check bit in the word.
PC – personal computer; push cart.
PDA – personal digital assistant; pocket-sized device; palmtop; 1984; superseded by

 functions in mobile phones.
PHP – open source scripting language.
PLC – Programmable logic controller, embedded device for automation.
PLD– programmable logic device; generic gate-level part that can be programmed for a

 function.
PROM – programmable read-only memory.
PWM – pulse width modulation. DC motor speed control technique.
Python – programming language.
Quadrature encoder – an incremental rotary encoder providing rotational position

 information.
Quadcopter – a small aircraft with four small horizontal rotors, like a helicopter.
Raspberry Pi – a small and inexpensive computer board that hosts the Linux operating 

system.
RAM – random access memory; any item can be accessed in the same time as any other.
Rcs – robot control system.
Reset – signal and process that returns the hardware to a known, defined state.
ROM – read only memory.
ROOMBA – a small floor cleaning robot.
RTOS – real-time operating system.
Sandbox – an isolated and controlled environment to run untested or potentially

 malicious code.
SATA – serial interface for mass storage devices.
SCADA – Supervisory Control and Data Acquisition – for industrial control systems.
SD – secure digital, non-volatile memory card.
Sensor – a device that converts a physical observable quantity or event to a signal.
Serial – bit by bit.
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Servo – a control device with feedback.
Siri – voice recognition ap.
Smartphone – communication device, usually running an operating system, with

 numerous features such as location finding, a camera, etc.
SOC – system on chip.
Software – series of instructions for a computer; description of an algorithm or process.
SRAM – static random access memory.
Stack – first in, last out data structure. Can be hardware or software.
Stack pointer – a reference pointer to the top of the stack.
State machine – model of sequential processes.
Stiction – static friction; needs to be overcome to get started. 
System – a collection of interacting elements and relationships with a specific behavior.
System of Systems – a complex collection of systems with pooled resources.
Telerobot – robot system operated remotely.
Thread – smallest independent set of instructions managed by a multiprocessing

 operating system.
Toolchain – set of programming tools. 
TOPO – a personal robot.
Transceiver – receiver and transmitter in one box.
TTL – transistor-transistor logic in digital integrated circuits. (1963).
Tri-state – in microelectronic logic families, the output can be “1”, “0”, or a high

 impedance.
UART – universal asynchronous receiver-transmitter. Parallel-to-serial; serial-to parallel 

device with handshaking. 
USB – universal serial bus.
Watchcat – watches the watchdog.
Watchdog – hardware/software function to sanity check the hardware, software, and 

process; applies corrective action if a fault is detected; fail-safe mechanism.
Webcam – small digital camera with network capability.
WiFi – short range radio-based networking.
Wlan – wireless local area network.
Xor – exclusive logical or – true when either but not both inputs are true.
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