SYI-2000C
ROGO LANGUAGE CARD

INSTRUCTION MANUAL

Svi-2000C
ROGO LANGUAGE CARD

INSTRUCTION MANLIAL

Scanned and converted to PDF by HansO, 2001

Published by
SPECTRAVIDEQ INTERNATIONAL LTD.

First edition
First printing 1986

Copyright (©1986 by Spectravideo International Ltd.

Spectravideo International Ltd. shall not be liable in any
event for claims of incidental or consequential damages
resulting from the furnishing, performance, or use of this

material.

Every effort has been made to supply complete and accurate
information in this manual. Nevertheless, due to our never
ending commitment to improve both product design and
performance, we Treserve the right to change product
specifications at anytime without prior notice.

No part of this publication may be stored in a retrieval
system, transmitted, or reproduced in any way, including but
not limited to photocopy, photograph, magnetic or other record,
without the prior agreement and written permission from

Spectravideo International Ltd.

Registered trademarks used in this manual are:

Spectravideo SVI-2000 and SVI-2000C are trademarks of
Spectravideo International Ltd.

MSX is a trademark of Microsoft Corporation.

RADIO INTERFERENCE

This equipment generates and uses radio frequency energy and if
not installed and used properly, that is, in strict accordance
with the manufacturer's instructions, may cause interference to
radio and television reception. It has been designed to comply
with the limits for a Class B computing device in accordance
with the specifications in Subpart J of Part 15 of FCC Rules,
which are designed to provide reasonable protection against
such interference in a2 residential installation. However,
there is no guarantee that interference will not occur in a
particular installation. If this equipment does cause
interference to radio or television reception, which can be
determined by turning equipment off and on, the user is
encouraged to try to correct the interference by one or more of
the following measures:

- Reorient the receiving antenna

- Relocate the computer with respect to the receiver

- Move the computer away from the receiver

- Plug the computer into a different outlet so that computer
and receiver are on different branch circuits.

If pecessary, the user should consult the dealer or an
experienced radio/television technician for additional
suggestions. The user may find the following booklet prepared
by the Federal Communications Commission helpful: "How to
Identify and Resolve Radio-TV Interference Problems". This
booklet is available from the U.5. Government Printing Office,
Washington, DC 20402, Stock No. 004-0002-00345-4.

WQRNINE l.

'fhis aqummantz as. been certlf‘led tu cerrpiy with the l1m1ts
for a class B Gmmputlng dev1ce, pursuant to Subpart J of Part
15 oF ?CC Ru1e$~ . , «

ﬂARNING 23

The user . is warned that the sh‘k :
this equipment must -be used. A fallwe tn use shmlded;,
cables -may result in excessxve radxa»frequency em1531ens Aim
violation of FCC: rules, - for whiah ‘the. user.. would be
respenslble.- (If. any extension csbles are: uaed, they must.
also be shielded and the shields connected by means of .metak
shell connectors so that there is.a full 360 degrees of-
connections: dxgltal connectmn are not goad emugh l'”m- radio
frequen01es.~, P FE T : e S

TABLE OF CONTENTS

CHAPTER PAGE
1 INTRODUCTION. c i e tieenarnnnssenetssssseatsonsnnnennnnnonns 1-1
HOW TO USE THIS MANUAL. . ceevnriteresnnnnnnn ceteereaeeanea 1-1
2 INSTALLATION. . eeeeeeeencsnoestanssosnnsannana feeeeeaaaeee 2-1
3 OVERVIEW...oiieiiiiiatienneriennssnansns Ct s ere e 3-1
3.1 WHAT IS ROGO...vvvvenrnnnennnnnennns et eeeee s 3-1
3.2 HOW ROGO WORKS. it teetinnrenosnassatnnreannnenananes 3-1
3.3 BLOCK~BUILDING IN ROGO.eevevnceeonnnnnsns e 3-6
3.4 SAVING AND LOADING A PROCEDURE.vevvinnnnn B
3.5 THE GRAPHIC SCREEN. ... cueeviornncannassconannonnnnns 3-9
3.6 ROGO TERMINOLOGY AND SYNTAX. .o wiuwenorecnnnnsnanann 3-10
4 THE COMMAND EDITOR. ¢vvvur v veeenesnsrneecnsssssaannennnsss 4-1
4.1 THE SCREEN AND EDITING KEYS. .. ivevvriatnnnsoannnnenn 4-1
4.2 SAMPLES SECTION.......c.. S 4t neeacrasaennnsns 4-4
4.3 A POINT TO REMEMBER......evvuuunns Sttt e et 4-6
5> ROBOTARM CONTROL COMMANDS. ceveveveneennnnnennnnsn veeaeae.5-1
5.1 ROTATING THE BASE...viviiiriinrerenarnonnacennnnnn ve2-3
5.2 MOVING THE LOWERARM. ..vveeronnenersnnrnarnncaanannns 5-5
5.3 MOVING THE FOREARM. vttt i tnsnniensssnararansannnnnn 5-6
5.4 ROTATING THE WRIST..... S et err ettt eaa s 5-7
5.5 MOVING THE FORCEPS. ..ttt iitiieittvtcocannnnnennnns 5-8
5.6 CHAPTER SUMMARY. . ecucrernrneenncensnnnnnns et etaanea 5-9
6 VARIABLES..i.itiiiniiiirinrnnnns tersssiieieancatecaaanans 6-1
6.1 MAKE (COMMAND) «vvvnnvnvnnnesnnssosasnseccanannansnns 6-1
6.2 THING (OPERATION)..iuvunvnnn. D 6-5
6.3 DEFINING A PROCEDURE USING VARIABLES. .c.c.vvrinveannn 6~7
6.4 CHAPTER SUMMARY. . eieneicnnenernoncnasaans Ciees e 6-9
7 ARITHMETIC OPERATIONS. svivseenvenrenenassnrannnnnsnnns !
7.1 SUM (OPERATION) s veeetensenesosnnnnsnoensnsnsnennnana 7-1
7.2 DIFF (OPERATION) teoeinteeerecenenrsnsanennacnss O
7.3 PROD (OPERATION) .t reiiiesonecnosontoasnansnnnnens 7-4
7.4 QUOT (OPERATION) «tuvceaeeeencsssosonancncnsnannennns 7-5
7.5 INT (OPERATION) cetevernnenernsosnnasansnsnnnnan N
7.6 ROUND (OPERATION) eueeeueeescrosorannsnansnnnnnnns N
7.7 CHAPTER SUMMARY. ... cunesiienencnocsncnncnacnnnsnnnn .7-8

8 LOGICAL OPERATIONS....cccveevecrennens Ceisrcssesaanans ...8-1

8.1 < (OPERATION).e.eeecunen Ceitsessessurestsasaaneesanans 8-4
8.2 > (OPERATION) ceseieorsenccosencananns i sesesrrasane 8-6
8.3 = (OPERATION) cvuvereecronnnnens I 8-7
8.4 <= (OPERATION)....... T ++.8-8
8,5 >= (OPERATION)..veveessnsccccsssacraconcnns sessesssB-8
B.6 < (OPERATION)..ceicecansnennans Cetssereserrasenaans 8-9
8.7 AND (OPERATION}..... Y ...8-10
8.8 NOT (OPERATION) . .vviavsessanaascesnnnancnnns teeees.8-10
8.9 OR (OPERATION) ... iveavcrncecasen Ceeasresrerasanenas 8-11
8.10 XOR (OPERATION)...ceecovnsnn s eesiensetresestensaaas 8-12
8.11 CHAPTER SUMMARY.cesvanecccnnsersseconerans DS 4
9 CONTROL FLOW COMMANDS........ e seteasaerseennes crieenann .9-1
9.1 IF (COMMAND) . evvevosvnassscavecasacaannens srienrsasead-2
2.2 TEST (OPERATION) ceeeeernvansvnsnn Creatsressessrrana 9-4
9.3 IFTRUE (COMMAND)........ B 9-5
9,4 IFFALSE (COMMAND) sueveensraseccosanannacnanonnes N
9.5 REPEAT (COMMAND) .vvvvneencasocsonssanns I
9.6 STOP (COMMAND) . ¢ccaveavnnrnnss s ssesraressneanenane 9-9
9.7 WAIT (COMMAND}......... it enassaressasresanaasenans 9-10
9.8 0P (COMMAND) ... vvnvserccconacntensaans P
9.9 RUN (COMMAND/OPERATION)......cceen. Ciresecsesanaenen 9-13
9.10 CHAPTER SUMMARY.....eo0esen Ctasssserreesensaaannane 9-16
10 I/0 COMMANDS AND OPERATIONS. .cvtveevvsvravrecnecnnncnns 10-1
10.1 PRINT (COMMAND) s v v v ernsoooosnssnnscsaonaanansnnsans 10-4
10.2 LOCATE (OPERATION) cveevanvvannnn Ceesrsresssarnans 10-5
10.3 READC (OPERATION)...eveevnsnstssssnssrscnesessosna 10-6
10.4 READL (OPERATION) ..t teracnenccacnennanns ceraee. . 10-9
10.5 J1 (OPERATION) cceeeeeeatnnennassnens veseasssaess10-11
10.6 J2 (OPERATION)...... T T 10-12
10.7 SAVE "CAS (COMMAND) ¢+ v veevcsanncsannoenseaneancns 10-13
10.8 LOAD "CAS (COMMAND) . .evianccennannnnnnss ceeseal.10-14

10.9 CHAPTER SUMMARY......ceeesene tissssenesrsesaesel.10-16

11 WORDS AND LISTS PROCESSING. ceveverasenasenssas N N R |
11.1 BF (OPERATION)...veereevnnnnnnnn B N
11.2 FIRST (OPERATION).....vu.... Ceeeeeerennn casereeesll-6
11.3 WORD (OPERATION)..ceieenrennnn. I N R
11.4 SE (OPERATION) .eveveveenenenasoannns B B £
11.5 LPUT (OPERATION)...... e | R
11.6 NUMBERP (OPERATION) v eveevvnnesossrssssssnnnanass 11-11
11.7 WORDP (OPERATION) evvvvreveentnnsnsosessssncnnons 11-11
11.8 LISTP (OPERATION) tuvvevruereorsnssssnsnenannsanss 11-12
11.9 EMPTYP (OPERATION) vevvevenvenrnernssnsosasnncnsns 11-13
11.10 CHAPTER SUMMARY. . eveevursnsvernnsassssansensas.a11-15

12 SCREEN COMMANDS. s v ensvrannssssasssssossasssssessnnsesas 12-1
12.1 CLS (COMMAND) ¢ vvvsnvosnsasnnnnssssssssssssasesssal2-2
12.2 SHOWARM (COMMAND) +.vvevuevann ettt esesanrenaanenn 12-2
12.3 HIDEARM (COMMAND) v v veenrnnrsosassnsnassasanssnss 12-4
12.4 SHOWTEXT (COMMAND) ¢ vveveeennnsnnsstaninnenanonss 12-4
12.5 HIDETEXT (COMMAND) «:evessnssnssarssssnsnssoaseaaal2-4
12.6 CHAPTER SUMMARY . .t rinireinnnnansonunsscnncrenns 12-5

APPENDICES

APPENDIX A
TROUBLE-SHOOTING: s e e e vvnennannsnsassnsassnsasasssnsnsnans seeaA-1

APPENDIX B
QUICK REFERENCE SHEET. eeeecesncssssnssnssoasssnssnnssssnsaaaB-l

APPENDIX C
USEFUL SAMPLE PROCEDURES. . v sssseesssssssesssnnnsssssnsssassaC-1

APPENDIX D
RECURSIVE COMMANDS. et vvevvevonnvnnnnnsosnsanannssnnnnnnonnnns D-1

ILLUSTRATIONS

Fig. 2.1

Inserting the Rogo Cartridge.....c.vveesecees cissesraannans 2-1
Fig. 2.2

Connecting the Rogo Cartridge to the Robotarm..........co0.. 2-2
Fig. 2.3

The Text Screen and the Welcoming Message..esscescesce. ceena2-2
Fig. 3.1

The Built-in Commands in Rogo....... tresesreacscanen P |
Fig. 3.2

The Command Editor.....c.... Cessesecenrraararsean teeseraenes 3-4
Fig. 3.3

The Graphic Screen........ irsasecsenansens sesessrsanssans e e e3-9
Fig. 5.1

The Parts and Axes of the Robotarm...... ceeeresesceessaas ceaad=1
Fig. 10.1

Connecting JoysticksS..eevceerececnnes sreeseaas ceseenesessa10-11
Fig. 11.1

The Graphic Screen.......... cietsasesenceranes tereseeeennas 11-3

CHAPTER 1
INTRODUCTION

The SVI-2000C Rogo is specially designed to control the SVI-2000
Robotarm through an MSX computer. With the Rogo Cartridge and
Robotarm properly installed in your MSX machine, you will have
lots of fun programming the movement of the Robotarm while you
are actually learning a language very close to Logo, which is
another high-level language well-known for structured

programming.

As a matter of fact, Rogo owes much to Logo. Both use English-
like keywords and allow room for USER-DEFINED COMMANDS. The
construction of a program, or PROCEDURE as it is called in Logo,
is also similar. A procedure is made up of a series of wuser-
defined commands which are composed of built-in commands or
other user-defined commands.

In spite of these similarities, Rogo and Logo are somewhat
different. In Rogo, the turtle graphic commands of lLogo are
replaced by commands that control the movement of the actual
Robotarm and its image on the GRAPHIC SCREEN. Furthermore, some
of the string manipulation commands of Logo are omitted to
reduce the overall size of the language and thus allow more room
for user-written procedures.

HOW TO USE THIS MANUAL

This manual provides a thorough description of all the
primitives 1n Rogo as well as the ins and outs of defining and
editing your own commands. It is made up of 12 chapters and &

appendices:

Chapters 1 to 3 describe the basic operation of the Rogo
Interface. They give you a brief idea of what Rogo is and help
you install the Rogo Cartridge. The editing abilities of the
Rogo Command Editor are discussed in Chapter 4.

The 7 chapters that follow are devoted to describing the
capabilities of the Rogo primitives. Each chapter concentrates
on one category of primitives. These chapters are arranged in a
sequence that ensures you will pick up Rogo quickly and easily.
The Rogo Graphic Screen and Commands are then left to the last
chapter of the manual.

1-1

INTRODUCTION

As for the appendices, they contain supplementary material
intended primarily for the more advanced users. Appendix A is a
table of the error messages and possible remedies. A handy
reference sheet of all the Rogo commands and operations is
included in Appendix B. Appendix C is a set of useful sample
procedures that will, hopefully, inspire you to write more
sophisticated procedures. Last but not least, Appendix D
describes the recursive commands which, if handled properly, can
greatly enrich your command of Rogo.

1-2

CHAPTER 2
INSTALLATION

The installation of the S5VI-2000C Rogo Cartridge is very simple.
The steps are as follows:

1. Switch off the power of your computer.
2. Insert the Rogo Cartridge into the cartridge slot. Make sure
the Joystick Sockets on the cartridge are on your right hand

side.

CAUTION: 1. Faulty insertion may short circuit your
computer.

2. The Cartridge can only be run on MSX computers
with 64K RAM or more.

Fig. 2.1 Inserting the Rogo Cartridge

2-1

INSTALLATION

Rogo Cartridge to the Robotarm with the two

3. Connect the
Note that the Joystick Socket for Joystick

cables provided.
2 is on top of that for Joystick 1.

Fig. 2.2 Connecting the Rogo Cartridge to the Robctarm

4. Switch on the monitor and the computer. The Text Screen

with a welcoming message will be displayed:

r A

WELCOME TO SVI-ROGD

VERSION 1.1
COPYRIGHT (1986)

A

\ Y,

Fig. 2.3 The Text Screen and the Welcoming Message

The guestion mark, ?, is the prompt that tells you Rogo is ready

to receive messages. The cursor next to it indicates where the

next character you type will be displayed.

CHAPTER 3
OVERVIEW

3.1 WHAT IS ROGO

Rogo 1is a programming language designed to control the SVI-2000
Robotarm through an MSX computer. Just like any other high-level
language, Rogo uses English-like keywords to interact with the
users. It is easy to learn and use. What's more, Rogo
encourages a modular, structured approach to programming--a
technigue whieh can be applied to other more sophisticated
programming languages and which is useful for teaching logic and
problem solving.

3.2 HOW ROGO WORKS

Rogo responds to 2 kinds of commands: the PRIMITIVES and the
USER-DEF INED COMMANDS.

Primitives

The primitives are the built-in commands which act as the first
layer of building blocks in a Rogo program. Primitives can
neither be re-defined nor edited. To have a peek at the
primitives, type COMMAND and press ENTER.

/’7 BUILT IN COMMANDS IN ROGO: ‘
BC BA LU
LD FU FD
we WA FC
FO SHOWARM HIDEARM
SHOWTEXT HIDETEXF cLs
PRINT op LOCATE
REPEAT STOP TO
EDIT TEST ¥
IFTRUE IFFALSE MAKE
COMMAND DIR SAVE
LOAD SELFTEST WAIT
RUN THING READC
READL J J2
OR AND NOT
XOR suM DIFF
PROD quoT INT
ROUND BF EMPTVP
FIRST LPUT SE
WORD LiSTP WORDP
NUMBERP

= J

Fig. 3.1 The Built-in Commands in Rogo

3-1

OVERVIEW

The primitives are categorized in 9 groups: Robotarm Control
Commands, Screen Commands, Variables, Arithmetic Operations,
Logical Operations, Control Flow Commands, I/0 Commands,
Word/Lists Command and To/Edit Commands. We will discuss each
of these in detail later.

Executing a primitive is simple. You have already executed
one primitive, COMMAND, now try another:

1. Type the name of the primitive in the Text Screen. Whatever
you type will be displayed in the upper case.

EXAMPLE :
? BC

BC is the primitive to rotate the base of the Robotarm
clockwise.

2. Give the appropriate inputs (arguments).
EXAMPLE :
7 BC 100

BC 100 will rotate the base of the Robotarm clockwise for
100 time units.

NOTE : Not every primitive takes an input, but many of
them do. Read the respective chapters for details.

3. Press ENTER. This asks Rogo to take notice of and process
what you have typed.

NOTE : You must press ENTER at the end of each command
line.

Once you have pressed ENTER, the base of your Robotarm rotates
clockwise.

OVERVIEW

Whenever you enter something, Rogo checks it against its table
of primitives and, if found, executes it in the way you have
specified. If it is not a primitive, Rogo will continue to check
against the table of commands you have defimed earlier, if any.
Rogo will then execute the command if found or display an error
message telling you it doesn't know how to do if not (see
Appendix A for details).

Rogo can execute more than one primitive simultaneously. All you
have to do is to enter all of the commands on the same logical
line.

A logical 1line can be up to 254 characters in length and is
delimited by a carriage return (ENTER).

EXAMPLE :

7 BC 200 LU 150 FU 200 WE 150 FC 200 FO 200 WA 100 FD 150 LD 80
BA 200 ENTER

Lu, FU, WC, FC, FO, WA, FD, LD, and BA are the primitives that
control the various parts of the Robotarm.

NOTE : 1. A space must be inserted between a primitive and
its input.
2. Rogo can only read a maximum of 254 characters at
a time.
3. If ROGO encounters two or more control commands
acting on the same axis, it will execute each
command, one at a time, in sequence.

User-defined Commands

Rogo is a very versatile language. If you don't find the
primitives adequate, you can define your own commands to suit
your specific needs. Not only that. You can edit the defined
commands whenever necessary.

Defining and editing a command tske place in the Command Fditor.
Before you can edit a command, you must define it first. Let's
define a new command called MOVE.

3-3

OVERVIEW

Type TO in the Text Screen.

EXAMPLE:

? 10

T0 is the primitive that defines a new command.

Type the name of the command you are going to defipe.
Precede the name with a double quotation mark, ".

EXAMPLE :
? T0 "MOVE
NOTE : A command name can consist of up to 9 letters,

numbers, and/or symbols, but the first character
must be a letter.

Press ENTER. You are brought to the Command Editor:

.

ED:MOVE Cal Rud [H5
-
top bottom 4 = word -= ¥ word gxit

Fig. 3.2 The Command Editor

OVERVIEW

The name of the new command will appear at the top of the
screen and functions of the first five function keys at the
bottom. The Rogo Command Editor supports full-screen
editing. You can move the cursor around the screen, type
over any mistakes, as well as insert and delete text. Note
that the prompt in the Command Editor becomes a >.

Define your command. You can define as many lines as you

wish.

EXAMPLE:

>PRINT [HELLO, GLAD TO MEET YOU.] ENTER
>LU 200 FU 300 ENTER
>WC 300 ENTER

PRINT is a primitive that tells Rogo to print its input.
Apart from primitives, you can incorporate user-defined
commands in building a mew command. More about this in the
next section.

Type END in a fresh line to indicate you have finished
defining the command. (Then press ENTER)

To exit the Command Editor, enter AZ or press F5. You are
then back in the Text Screen.

Executing a user-defined command is the same as executing a
primitive. Type MOVE and press ENTER.

If you want to edit the command MOVE.

1. Type EDIT and enter the command name. Don't forget the
space and the double guotation mark.

EXAMPLE :

? EDIT "MOVE ENTER

3-5

OVERVIEW

You are then in the Command Editor and the lines you
have defined in MOVE are displayed.

2. Edit your command. The steps are the same as defining a
new command.

3.3 BLOCK-BUILDING IN ROGO

In Rogo, a program is better known as a procedure. A procedure
can be composed of primitives only, as in the case of MOVE. But
most often a procedure contains both primitives and other user-
defined commands.

EXAMPLE :

? T0 "MOVEZ2

In the Command Editor you type:

>MOVE

>BA 200 BC 300

>LD 200 FD 300

>END

>AZ

If you tell Rogo to execute MOVE2, it will execute MOVE first
and then sequentially the other primitives in MOVEZ.

Now you see you can use primitives as building blocks to define

new commands, and then use the defined commands to build still

more user-defined commands.

3-6

OVERVIEW

EXAMPLE :

7 TO '"UPDOWN
>FU 200 FD 300
>END

>hL

? T0O "LEFTRIGHT
>BC 200 BA 200
>END

>AZ

7 TO "MOVE3
>UPDOWN
>LEFTRIGHT

>END

>ANZ

MOVE3 1is built on top of 2 user-defined commands, UPDOWN and

LEFTRIGHT. This block-building process is best explained by a
diagram:

IMDVE3|

[uPDOWN | [LeF TRIGHT]

[Bc | [BA | [Fu || fp |

Thus, a Rogo procedure is written from the bottom up:
Primitives are combined to build user-defined commands, which
are, in turn, combined to produce more complex commands and so
on in building block fashion until one or two commands can
execute the entire procedure.

3-7

OVERVIEW

3.4 SAVING AND LOADING A PROCEDURE

When you define a procedure, the procedure is stored in the RAM
(Random Access Memory) of the computer. Everything in the RAM
will be lost if you switch off the computer. Surely you don't
want to retype your procedures everytime you turn on the
computer. You can save the procedures on cassette tapes and load
them back into the RAM whenever necessary.

Preparing a Cassette Tape

1. Insert a tape into a cassette recorder that works with your
MSX computer.

2. Rewind the tape.
3. Press STOP on the cassette recorder.
Saving a Workspace
A workspace 1s a part of the RAM where the procedures are
stored. If you save a procedure, all the other procedures in the
RAM will be saved too. The steps are:
1. Prepare a tape.
2. Type SAVE "CAS on the Text Screen. DON'T press ENTER yet.
3. Press PLAY and RECORD on the recorder.
4. Wait until the blank tape has passed, then press ENTER.
Rogo will start saving all the procedures in the RAM.

5. Press ST0P on the recorder.

Read 10.7 for details.

3-8

OVERVIEW

Loading a Workspace

1.

4.

Prepare the tape that holds the workspace.
Type LOAD "CAS on the Text Screen and press ENTER.
Press PLAY on the recorder.

Every procedure in the workspace will be loaded intoc the
RAM,

If the workspace can't be loaded, repeat the procedure from
step 1. If the problem persists, refer to Appendix A for a
solution.

Press STOP on the recorder.

Read 10.8 for details.

3.5 THE GRAPHIC SCREEN

Apart from controlling the Robotarm, Rogo can simulate the
actual movement on the Graphic Screen. To invoke the Graphic
Screen, type SHOWARM.

WINDOW 1

@ WINDOW 2
=

Al 135
WINDOW 3
Ad 0

égg;;ii:l} WINDOW 4

A2 120 A3 35 A5

Fig. 3.3 The Graphic Screen

OVERVIEW

The Graphic Screen is made up of 4 windows, each of which
displays a different perspective of the Robotarm. The Graphic
Screen can work with the Screen Commands to preview the movement
of the Robotarm. To exit the Graphic Screen, type HIDEARM. The
details will be discussed in Chapter 12.

3.6 ROGO TERMINOLOGY AND SYNTAX

Before we look at specific commands, there are 2 things we have
to make clear: the definition of some Rogo terms and the usage
of punctuations in Rogo.

Definitions

COMMAND A command 1is a keyword that causes Rogo to
perform a specific function. It may require you
to enter certain inputs to make it effective.
There are 2 kinds of commands in Rogo, the
PRIMITIVES and the USER-DEFINED COMMANDS.

The primitives are the BUILT-IN COMMANDS which
cannot be altered. There are totally 64
primitives in Rogo.

The user-defined commands are the commands that
you define on top of the primitives or other
user-defined commands.

A command name can consist of up to 9 letters,

numbers and/or symbols, but the first character
must be a letter.

WORD A word is distinguished from a command by a
double quotation mark preceding it. It must not
exceed 254 characters.

EXAMPLE:

7 PRINT "HELLO

3-10

LIST

INSTRUCTIONLIST

VARIABLE

OVERVIEW

HELLD is a word and PRINT is a primitive. A word
can be made up of any combination of
alphanumeric characters and is delimited by a
space. A word need not be preceded by a double
quotation mark if it begins with a number.

A list is enclosed by a pair of sguare brackets,
{ 1. It consists of unguoted words. The maximum
number of characters in a list is 254.

EXAMPLE :

? PRINT {HOW OLD ARE YOU? I'M 100.]

HOwW, OLD, ARE, YOU, 27, I'M, 100, ., are all
elements of the list.

An instructionlist is an instruction or set of
instructions enclosed by a pair of square
brackets, [].

EXAMPLE ¢

? IF 2 > 1 [PRINT [GREATER THAN]]

IF is a conditional primitive and it takes a
condition, 2 > 1 in this case, and an
instruction (PRINT [GREATER THAN]) in form of a

list.

A variable 1is a '"container" which holds a
certain value.

EXAMPLE :
? MAKE "COUNT 1
MAKE 1is a primitive that assigns a value to a

variable. In the above example, COUNT is the
variable and 1 is its value.

3-11

OVERVIEW

0BJECT A Rogo object can be a word, list, the content
of a wvariable, or the result of a Logical
Operation

OPERATION An operation is a primitive that causes Rogo to

output a certain result. It is different from a
command in that it does not tell Rogo what to do
with the output. All arithmetic and logical
manipulations are operations.

EXAMPLE :
?7 SWM 2 2

SWIM is an Arithmetic Operation that adds 2
inputs. If you enter the above example alone,
Rogo will calculate and put the result in its
memory without telling you anything. If you want
to print the result, you must say so.

EXAMPLE :
? PRINT SUM 2 2
You will get 4 in this case.
Punctuations
There are 3 punctuation marks that have special meanings to

Rogo: the double quotation mark, ", the square brackets, [],
and the colon, :.

" The double quotation mark is used immediately before a
WORD to distinguish it from a command.

[1 Square brackets are used to delimit a LIST and an
INSTRUCTIONLIST composed of words or lists which in total
do not exceed 254 characters. The square brackets must be
in pairs. Otherwise, an "IMBALANCED PARENTHESES!" error
will occur.

3-12

OVERVIEW

A colon must be placed immediately before a word which is
to be treated as a VARIABLE. The name of a variable can be
any combination of letters and numbers as long as it
begins with a letter and does not exceed 9 characters.
EXAMPLE :

7?7 MAKE "SVI "ROGO

7?7 PRINT :5VI

ROGO

Notice the caolon after PRINT. It specifies the word SVI is

a variable and PRINT asks Rogo to output the value of that
variable.

3-13

CHAPTER 4
THE COMMAND EDITOR

4.1 THE SCREEN AND EDITING KEYS

The Command Editor is the screen where you define a new command
or edit a defined command. Editing in the Command Editor is
different from what you do in the Text Screen where you use
BACKSPACE to move back and type over an error. Before we
introduce the editing keys, we would like to say a few words on

the screen.,
The Editing Screen

The Editor displays 22 lines at one time. When the cursor gets
to the bottom of the screen, the screen automatically scrolls
the whole screen up one line. If you want the screen to scroll
down one line, move the cursor to the top of the screen and
press f once. Keep pressing + will scroll the screen up
continuously, and the screen will scroll down continuously if
you keep pressing 4.

Every line on the screen can hold a maximum of 254 characters,
but only 39 characters, including the prompt, can be displayed
simultaneously. If you enter more than 38 characters, the screen
will scroll rightward 8 characters each time to make room for

you. To show what we mean, type the following:

? TO "TRIAL

>PRINT [EVERY LINE ON THE SCREEN CAN HOLD A MAXIMUM OF 254
CHARACTERS, BUT ONLY 39 CHARACTERS, INCLUDING THE PROMPT, CAN
BE DISPLAYED SIMUL TANEQUSLY.]

Note how Rogo scrolls the screen rightward. An "+" sign 1is
displayed at the rightmost column to indicate that some
characters are beyond the display of the screen. If more than
254 characters are entered for a single line, Rogo will ignore
the extras. You can use =« and - to scroll rightward and
leftward.

The cursor will not move to the next prompt unless you press
ENTER to show you have finished defining the line.

4-1

THE COMMAND EDITOR

Editing Keys

In the Editor, the following function and control keys are
applicable:
KEY DESCRIPTION
F1 or AT Moves the cursor to the beginning of the
procedure.

F2 or AB Moves the cursor to the bottom of the procedure.
F3 or AA Moves the cursor one word to the left.

F4 or AF Moves the cursor one word to the right.

F5 or AZ Exits the Command Editor.

f6 or AP Moves the screen up 10 lines.

F7 or AN Moves the screen down 10 lines.

F8 or AD Deletes the line containing the cursor.

F9 or Al Inserts a line where the cursor stands.

THE COMMAND ED

ITOR

KEY DESCRIPTION

"Abort edit (Y or N)?" message will b
displayed to meke sure you really want t
abort the Editor without saving th
procedure. Confirm by typing Y.

F10 or AQ Aborts the Command Editor without saving. An

(>4
o]
€

of the cursor.

DEL Deletes the character immediately to the left

INS ON/OFF Toggles between INS DON/OFF. Inserts a character
where the cursor stands when ON and overwrites
when OFF. A message "INS" is displayed on top
of the £ditor when the mode is INS ON. INS ON
is the default mode.

— Moves the cursor one character to the right.

- Moves the cursor one character to the left.

? Moves the cursor one line up.
l Moves the cursor one line down.
for quick reference, the following information is displayed at
the bottom of the Command Editor:
top bottom -— word —» word exit
which indicate the application of Fl, F2, F3, F4, and F5

respectively.

THE COMMAND EDITOR

On pressing SHIFT, the information changes to:
page 4 page del-1n ins-1n abort

which 1indicate the application of F6, F7, F8, F9, and Fl0
respectively.

Two other messages are displayed at the top of the screen:
: and R:

The number following C: shows the column number of the cursor
and that following R: is the row number.

Overflow Warning

There are times when you define or edit an excessively long
procedure. If the procedure gets too long, the Editor will
probably run out of memory and display an overflow warning
telling you how many character-spaces are left in the memory.

The warning will appear whenever the space is less than or equal
to 20 characters.

EXAMPLE :

WARNING: SPACES LEFT ARE LESS THAN 18

It means that the Editor for that particular procedure can
accept less than 18 characters. You are advised to exit the

tditor. Wwhen the memory is full, o more characters can be
entered unless you delete some lines.

4.2 SAMPLES SECTION
EXAMPLE :

7 TO "HELLO

4-4

THE COMMAND EDITOR

You are now in the Command Editor. Notice that there is a
ED:HELLO message displayed at the top left-hand cormer reminding
you that you are defining a new command HELLO. Type:

SPRINT [WHAT'S THE PRODUCT OF 123 AND 3217]

Notice how it fits in the screen. Let's say we have finished
defining HELLOD. Type:

>END
>N

Don't forget you can press F5 instead of CTRL-Z. If you want to
edit HELLO, type:

? EDIT "HELLO

Note that a ED:HELLO message is displayed on the Command Editor
and the lines you have defined previously are listed. Let's add
a few lines to the procedure. The cursor is at the beginning of
the first line. Use the editing keys to move the cursor to the
beginning of END. Overtype with the following lines:

>PRINT PROD 123 321
>END
>N

You have defined quite a number of procedures. If you want to
review what they are, type DIR and press ENTER. The screen will
be cleared and a message PROCEDURES INSIDE ROGO: will be
displayed. Underneath the message is the directory of all the
procedures stored in the RAM. The names of the procedures will
be listed in the order in which they were defined.

THE COMMAND EDITOR

4.3 A POINT TO REMEMBER

Never use the same command name twice in defining a new command;
otherwise, it will erase the previous definitions of the
command. For instance, type TO "HELLO and press ENTER. See

what happens. All the lines you have defined and edited earlier
are gone.

CHAPTER 5
ROBOTARM CONTROL COMMANDS

This category consists of 10 primitives: BC, BA, LU, LD, FU, D,
WC, WA, F0O, and FC. They rotate the base of the Robotarm, and
move the forearm, lowerarm, wrist, and forceps of the Robotarm
for a specified pericd of time. Before we go on, let's loock at
the various parts of the Robotarm and the respective axes and
primitives that control the parts.

SPOT LIGHT

FORCE

Fig. 5.1 The Parts and Axes of the Robotarm

Primitives controlling the base: BC, BA
Primitives controlling the lowerarm: Lu, LD
Primitives controlling the forearm: Fu, FD
Primitives controlling the wrist: WC, WA
Primitives controlling the forceps: Fo, FC

To get your "feet wet", here is a procedure using all of the
Robotarm Control Commands:

? TD "GREETINGS
>PRINT [BASE CLOCKWISE] BC 250
>PRINT [BASE ANTICLOCKWISE] BA 250

>PRINT [LOWERARM UP} LU 200

5-1

ROBOTARM CONTROL COMMANDS

>PRINT [LOWERARM DOWN] LD 200
>PRINT [FOREARM UP] FU 300

>PRINT [FOREARM DOWN] FD 300

>PRINT [WRIST CLOCKWISE] WC 200
>PRINT [WRIST ANTICLOCKWISE] WA 200
>PRINT [FORCEPS OPEN]} FO 150

>PRINT {FORCEPS CLOSE] FC 150

>END

>N

NOTES ON SYNTAX NOTATION

Angle brackets, < >, are used in describing the syntax of the
primitives. They indicate the possible inputs to complete the
command or operation concerned.

The nature of the primitive, whether it is a command or an
operation, is enclosed in parentheses next to the name of the
primitive. Just in case you have forgotten the difference
between a command and an operation, we have defined them again

below:

COMMAND - A command with appropriate inputs tells Rogo to
perform a certain function and then Rogo will give you an

explicit response.

OPERATION - An operation with appropriate inputs tells Rego to
output a certain result without specifying what to do with the

result.

ROBOTARM CONTROL COMMANDS

5.1 ROTATING THE BASE

Rogo can rotate the base of the Robotarm in 2 directions,
clockwise and anticlockwise, through a maximum of 270°.

BC (COMMAND)

Rotates the base of the Robotarm clockwise for a specified
time periocd.

Syntax: BC <time period>

NOTE : <time period> can be expressed in a positive real
number, a variable, or an Arithmetic Operation.

EXAMPLE :

7 BC 100

It rotates the base of the Robotarm clockwise for 100 time
units.

EXAMPLE :

7 MAKE "TIMEUNIT 100

? BC :TIMEUNIT

MAKE 1is a primitive to assign a value to a variable. In the
above example, TIMEUNIT is the name of the variable whose value

is 100. :TIMEUNIT outputs the value of the variable and BC
:TIMEUNIT rotates the base for 100 time units.

ROBOTARM CONTROL COMMANDS

EXAMPLE :
? BC SuM 70 30

SUM 70 30 is an Arithmetic Operation that adds the two numbers
following it and outputs the result. BC SUM 70 30 bears the same
result as BC 100.

NOTE : The angle formed by the movement relative to the
initial position is directly proportional to the
length of time the Robotarm is moved; hence, the
longer the time unit, the wider the angle.

BA (COMMAND)

Rotates the base of the Robotarm anticlockwise for a specified

time period.

Syntax: BA <time period>

EXAMPLE :

? BA 75

It rotates the base anticlockwise for 75 time units.
EXAMPLE :

? MAKE "T 75

? BA =T

It has the same effect as BA 75.

EXAMPLE :

7 BA DIFF 100 25

5-4

ROBOTARM CONTROL COMMANDS

DIFF outputs the difference of the two numbers following it.

DIFF 100 25 is the same as BA 75.

5.2 MOVING THE LOWERARM

Rogo can raise the lowerarm of the Robotarm and lowers

through a maximum of 90°.

LU (COMMAND)

BA

it

Raises the lowerarm for a specified time period.

Syntax: LU <time period>

EXAMPLE .

? LU 50

It raises the lowerarm for 50 time units.
EXAMPLE :

? MAKE "TIMEl 50

? LU :TIMEL

EXAMPLE:

? LU PROD 10 5

PROD outputs the product of the two numbers
PROD 10 5 is the same as LU 50.

following

it.

LY

5-5

ROBOTARM CONTROL COMMANDS

LD (COMMAND)

Lowers the lowerarm for a specified time period.

Syntax: LD <time period>

EXAMPLE:

? LD 25

It lowers the lowerarm for 25 time units.
? MAKE "TIMEZ2 25

7 LD :TIME2

EXAMPLE :
? LD QUOT 50 2

QUOT outputs the quotient of the two numbers following it. LD
QUOT 50 2 is the same as LD 25.

5.3 MOVING THE FOREARM

Rogo can raise and lower the forearm of the Robotarm through a
maximum of 85°.

FU (COMMAND)

Raises the forearm for a specified time period.

Syntax: FU <time period>

5-6

ROBOTARM CONTROL COMMANDS

EXAMPLE :
? MAKE "VARIABLE 100
? FU 50 FU :VARIABLE FU SUM 30 90

It raises the forearm for a total of 270 time units.

FD (COMMAND)

Lowers the forearm for a specified time period.

Syntax: FD <time period>
EXAMPLE :

? FD 100

? FD PROD 10 10

? MAKE "A 50

? FD :A

5.4 ROTATING THE WRIST

Rogo can move the wrist of the Robotarm clockwise
anticlockwise without any limitation. The spotlight of
Robotarm is 1lit when the wrist moves.

WC (COMMAND)

and
the

Rotates the wrist clockwise for a specified time period.

Syntax: WC <time period>

ROBOTARM CONTROL COMMANDS

EXAMPLE:

? WC 400

? MAKE "ANGLE 200

? WC :ANGLE WC DIFF 500 200

WA (COMMAND)

Rotates the wrist anticlockwise for a specified time period.

Syntax: WA <time period>
EXAMPLE :
? MAKE "ANGLE 300

? WA :ANGLE WA 200 WA QUOT 100 2

5.5 MOVING THE FORCEPS

Rogo can open and close the forceps of the Robotarm through a
maximum of 108°.

FO (COMMAND)

Opens the forceps for a specified time period.

Syntax: FO <time period>

ROBOTARM CONTROL COMMANDS

EXAMPLE :

? FO DIFF 250 50 FO 200
? MAKL "ANGLE 100

? FO :ANGLE

FC (COMMAND)

Closes the forceps for a specified time period.

Syntax: FC <time period>
EXAMPLE :
? MAKE "TIME 50

? FC 100 FC :TIME FC SWM 50 50

5.6 CHAPTER SUMMARY

PRIMITIVE SYNTAX DESCRIPTIGN
BC BC <time period> | Rotates the base clockwise.
BA BA <time period> | Rotates the base anticlockwise.
LU LU <time period> | Raises the lowerarm.
LD LD <time period> | Lowers the lowerarm.

5-9

ROBOTARM CONTROL COMMANDS

PRIMITIVE SYNTAX DESCRIPTION
Fu FU <time period> | Raises the forearm.
FD FD <time period> | Lowers the forearm.
WC WC <time period> | Rotates the wrist clockwise.
WA WA <time period> | Rotates the wrist anticlockwise.
FO FO <time period> | Opens the forceps.
FC FC <time period> | Closes the forceps.

5-10

CHAPTER 6
VARIABLES

MAKE and THING are two primitives that are frequently used in
manipulating variables. MAKE names a variable and assigns a
value to that wvariable. THING outputs the content of a
variable. Let's begin with some examples:

7 MAKE

"WORD "UNICORN

7?7 PRINT :WORD

UNICORN

? MAKE "LIST [UNICORNS LIVE IN LEGENDS]

? PRINT :LIST

UNICORNS LIVE IN LEGENDS

? MAKE

"NUMBER 1

? PRINT THING "NUMBER

7 MAKE

"NUMBER SUM 2 4

? PRINT THING "NUMBER

6.1 MAKE (COMMAND)

Names a variable and assigns a value to that variable.

Syntax:

NOTE

MAKE <variable name> <{value>

1. The name of a variable should begin with a letter
and must not exceed 9 characters. If a variable
name is longer than that, Rogo will flag an error
message. Numbers and symbels are accepted.

6-1

VARIABLES

2. The name of a variable is regarded as a word in
Rogo. Therefore, it must be preceded by a double

quotation mark, ".

3. If the same variable name is wused twice, the
second value will replace the first.

4. The value of a variable can be a word, a number, a

list, an Arithmetic Operation, or an I/0
Operation. A word must be preceded by a double
quotation mark, ", whereas a list should be

enclosed by a pair of square brackets, [].

The above notes are applicable to both MAKE and THING.
EXAMPLE :
7 MAKE "SVI "ROGD
? PRINT :5VI
ROGO
In the above example, the variable name is SVI whose value is
ROGO. Since the value is a word, 1t is preceded by a double
quotation mark. The :SVI in the PRINT command asks Rogo to
output the content of the variable SVI and the primitive PRINT
prints the result.
EXAMPLE :
? MAKE "SVI 2000
? PRINT :5VI

2000

As the value of the variable in this case is a number, it needs
not be preceded by a double quotation mark.

6-2

VARIABLES

EXAMPLE :

? MAKE "GREETINGS [HOW ARE YOU?]
7 PRINT :GREETINGS

HOW ARE YOU?

EXAMPLE :

7 MAKE "RESULT SUM 2 3

7?7 PRINT :RESULT

SUM is an Arithmetic Operation. Since Arithmetic Operations can
take variables as inputs, the value of the variable in a MAKE
command can also be in the following format:

EXAMPLE :

7?7 MAKE "A 2

7?7 MAKE "B 3

? MAKE "RESULT SWM :A :B

? PRINT :RESULT

VARIABLES

The value of a variable can also be an 1/0 Operation that
concerns true or false:

EXAMPLE :

7 TO "LOG

> MAKE "LOGIC1 J11

> PRINT :LOGIC1

> END

> AZ

J1 1is an I/0 operation that reads the direction of the joystick
in Joystick Port 1 (to connect the Jjoystick, read 10.5). It
outputs true when the joystick is in the direction it specifies.
Otherwise, it outputs false. In the above example, if the
joystick is being pushed forward while LOG is being executed,
Rogo outputs and prints TRUE.

EXAMPLE:

? T0 "READ

> MAKE "I/0 READC

> PRINT :1/0

> END

> A

READC is an I/0 operation. It reads and outputs the first
word typed. Read 10.3 for details.

6-4

6.2 THING (OPERATION)

VARIABLES

Outputs the value of the variable named.

Syntax: THING <variable name>
EXAMPLE :

? MAKE "SVI "ROGO

? PRINT THING "SVI

ROGO

? MAKE "SVI1 2000

7 PRINT THING "SVI

2000

? MAKE "GREETINGS [HOW ARE YOU?]
? PRINT THING "GREETINGS

HOW ARE YOU?

? MAKE "A 5

7 MAKE "B 6

? MAKE "RESULT PROD :A :B

? PRINT THING "RESULT

30

VARIABLES

At a glance the operation THING "SVI works exactly like :5VI.
But THING can do much more. Consider the following:

EXAMPLE :

? MAKE 'SVI "ROGG

? MAKE "ROGO 2000

? PRINT THING :SVI

2000

In the first MAKE command, SVI is the variable name and ROGO is
the value. In the second MAKE command, the value of the previous
variable becomes a variable itself, having a value of 2000.
THING :SVI then outputs 2000 as the transformed value of SVI. If

you use the colon command without THING, the outcome will be
completely different.

? PRINT :SVI
ROGO

? PRINT :ROGO
2000

The colon command alone can only recognise the value assigned in

one MAKE command.

VARIABLES

6.3 DEFINING A PROCEDURE USING
VARIABLES

Variables are very useful in defining procedures. Let's start
with a simple procedure using one variable:

EXAMPLE :

? TD "MOVES :TIMEUNIT

>PRINT [ROTATE BASE CLOCKWISE] BC :TIMEUNIT

>PRINT [RAISE LOWERARM] LU :TIMEUNIT

>PRINT [RAISE FOREARM] FU :TIMEUNIT

S>PRINT [ROTATE WRIST CLOCKWISE] WC :TIMEUNIT

>END

>AZ

In the above example, MOVES is the name of the procedure and
TIMEUNIT is the variable name. The colon before TIMEUNIT tells
Rogo MOVES takes a variable called TIMEUNIT. wWhen you execute
MOVES, you have to enter the value of TIMEUNIT too.

EXAMPLE :

? MOVES 100

It tells Rogo to execute MOVES which takes a variable having a
value of 100. The base, lowerarm, forearm, and wrist will all
move for 100 time units and on the screen you will read:

ROTATE BASE CLOCKWISE

RAISE LOWERARM

RAISE FOREARM

ROTATE WRIST CLOCKWISE
6-7

VARIABLES

Try to execute MOVES without giving the value of the variable.

You will certainly get an error message.

Now you have no trouble defining a procedure using one variable.

Using two variables is more or less the same as using one:
EXAMPLE :

? TO "BOX :SIDE :WIDTH

>PRINT [THE SIDE OF THE BOX [S:] PRINT :SIDE

>PRINT [THE WIDTH OF THE BOX IS:] PRINT :WIDTH

>PRINT [THEN THE AREA OF THE BOX 1S :]

>MAKE "RESULT PROD :SIDE :WIDTH

>PRINT :RESULT

>END

>AZ

When you execute BOX, don't forget to enter 2 values for
and WIDTH.

EXAMPLE :
? BOX 4 5

THE SIDE OF THE BOX IS:

THE WIDTH OF THE BOX IS:

THEN THE AREA OF THE BOX IS:

20

6-8

SIDE

6.4 CHAPTER SUMMARY

VARIABLES

PRIMITIVE SYNTAX DESCRIPTION
MAKE MAKE <variable> Names a variable and assigns a
<value> value to the variable.
THING THING <variable> | Outputs the value of the
variable named.

6-9

CHAPTER 7
ARITHMETIC OPERATIONS

In Rogo, addition, subtraction, multiplication, and division are
performed through the primitives of SWM, DIFF, PROD, and QUOT
respectively. It can also output the integer portion of or
integer round off from a number using INT and ROUND. All
Arithmetic Primitives are operations.

EXAMPLE :

? TO "EXERCISE

>MAKE "A SUM 30 30 PRINT :A BC :A

>MAKE "B DIFF 100 50 PRINT :B LU :B

>MAKE '"C PROD 20 4 PRINT :C FU :C

>MAKE "D QUOT 200 2 PRINT :D WC :D

>MAKE "E INT PROD 15.6 4.8 PRINT :E FO :E

>MAKE "F INT QUOT 100 3 PRINT :F FC :F

>MAKE "G ROUND DIFF 200 0.1 PRINT :G FD :G

>MAKE "H ROUND SUM 50.3 30.1 PRINT :H LD :H

>END

>hZ

7.1 SUM (OPERATION)

OQutputs the sum of the two numbers that follow.

Syntax: SUM <real number> <real number>

7-1

ARITHMETIC OPERATIONS

EXAMPLE :

? 5UM 2 2

You will not get a 4 displayed on the screen. This is because
SUM 1is an operation. You have to specify what to do with the
output; otherwise Rogo simply outputs and remembers the addition

without working further on it. If you want to read the output on
the screen, tell Rogo to print it:

EXAMPLE :
7?7 PRINT SUM 2 2
4

SUM can add only 2 numbers at a time. If you want to add 3
numbers, see what happens:

EXAMPLE :

7 PRINT SUM 1 2 3

I DON'T KNOW HOW TO 3
The right way to add 3 numbers is:
EXAMPLE :

? PRINT SbM SLM 1 2 3

SUM SUM 1 2 3 is equivalent to SUM (SUM 1 2) 3. SUM 1 2 outputs
3 and SUM 3 3 outputs 6.

7-2

ARITHMETIC OPERATIONS

EXAMPLE :

? PRINT SUM SUM SUM 1 2 3 4

10

SUM accepts variables as its inputs:
EXAMPLE :

? MAKE "A 5

? PRINT SUM :A 10

15

? MAKE "B 3

? PRINT SUM :A :B

NOTE : The above rules also apply to DIFF, PROD, QUOT, INT,.
and ROUND.

7.2 DIFF (OPERATION)

Outputs the difference of the two numbers that follow.

Syntax: DIFF <real number> <real number>
EXAMPLE :

? PRINT DIFF 10 5

7 PRINT DIFF DIFF 100 10 10

80 7-3

ARITHMETIC OPERATIONS

The arithmetic notation of DIFF DIFF 100 10 10 is:
(100-10)-10=80.

? MAKE '"ANS DIFF DIFF DIFF 100 10 20 30

? PRINT SUM 1 :ANS

41

The set of commands in MAKE is equivalent
[(100-10)-201-30=40.

7.3 PROD (OPERATION)

to

Outputs the product of the two numbers that follow.

Syntax: PROD <real number> <real number>
EXAMPLE :

? PRINT PROD 3 5

15

? PRINT PROD PROD 3 5 7

105

? MAKE "ANSWER PROD Sum DIFF 6 4 8 10

7 MAKE "RESULT :ANSWER PRINT PROD :RESULT :RESULT

10000

The arithmetic equivalent for the first MAKE command would

be [(6-4)+8]x10=100.

7-4

ARITHMETIC OPERATIONS

7.4 QUOT (OPERATION)

Outputs the quotient of the two numbers that follow.

Syntax: QUOT <real number> <real number>
EXAMPLE :

? PRINT QUOT 50 2

25

7 PRINT QUGT QUOT 50 2 5

7 MAKE "A 0 PRINT QUOT 100 :A

0]

? PRINT DIFF SUM PROD QUOT 100 4 2 5 30
25

By mow, you should recognise the above as the ROGO equivalent of
[(100+4)x2+5]-30=25

7.5 INT (OPERATION)

Outputs the integer of a number.

Syntax: INT <real number>

7~5

ARITHMETIC OPERATIONS

EXAMPLE :

? PRINT INT 3.01

? PRINT INT 3.99

? PRINT INT -3.01

-3

? PRINT INT -3.99

-3

INT also takes a variable or an Arithmetic Operation as inputs:
EXAMPLE :

7 PRINT INT SUM PROD 4.3 2.1 6

15

? MAKE "A -1.23

? PRINT INT :A

-1

7.6 ROUND (OPERATION)

Outputs the integer round off from a number.

Syntax: ROUND <real number>

7-6

ARITHMETIC OPERATIONS

EXAMPLE :

? PRINT ROUND 5.9

7?7 PRINT RODUND 5.1

? PRINT ROUND -5.9
-6

? PRINT -5.1

-5

Similar to INT, ROUND also takes a variable or an
Operation as its input.

EXAMPLE :

7 PRINT ROUND QUOT PROD 45.1 3.2 8

18

? MAKE "B 0.99 PRINT ROUND :B

Arithmetic

7-7

ARITHMETIC OPERATIONS

7.7 CHAPTER SUMMARY

PRIMITIVE SYNTAX DESCRIPTION

SUM SUM <real number> Adds two numbers.
<{real number>

DIFF DIFF <real number> Subtracts the second number
<real number> from the first one.

PROD PROD <real number> Multiplies two numbers.
<real number>

QUOT QUOT <real number> Divides the first number by
<real number> the second number.

INT INT <real number> | Outputs the integer of the

number .
ROUND ROUND <real number> Rounds of f the number.

CHAPTER 8
LOGICAL OPERATIONS

Ten Logical Operations are designated to look after
manipulations that concern only TRUE or FALSE. Rogo outputs TRUE
when the given condition is satisfied and FALSE when it is not.
The Logical Operations we are going to introduce are <, >, =,
<=, »>=, <>, AND, NOT, OR, and XOR.

If you have 2 joysticks connected to your MSX computer, you can
try the following procedure. If you are not sure how to connect
the joysticks to your computer, read section 10.5 of this manual
or the relevant section of the User's Manual of your computer.
EXAMPLE :

? 10 "START

>PRINT [PRESS ONE OR BOTH FIREBUTTONS.]

>PRINT [I CAN TELL WHICH FIREBUTTON HAS BEEN PRESSED.]

>WAIT 60 PRINT []

>REPEAT 30 [GAME ASK]

>END

>AZ

7 TO "GAME

>PRINT [GOOD.....]

>REPEAT 20 [MAKE "3J0Y1l J1 9 MAKE "J0Y2 J2 9]

>IF AND :J0Y1 :J0Y2 [PRINT [YOU'VE PRESSED BOTH FIREBUTTONS.]]

>IF XOR :30Y1 :30Y2 [PRINT [YOU'VE PRESSED ONE OF THE
FIREBUTTONS. LET ME SEE...]1]

>IF :J0YL [PRINT [IT IS JOYSTICK 1 !]]

8-1

LOGICAL OPERATIONS

>IF :3J0Y2 [PRINT [IT IS JOYSTICK 2 !]]

>IF NOT OR :30Y1 :3J0Y2 PRINT [YOU HAVEN'T PRESSED ANY
FIREBUTTONS.]]

>END

>0z

7 TO "ASK

>PRINT [TRY AGAIN? "YES" OR "NO."]
>MAKE "ANS READC

SPRINT [1]

>IF :ANS = "NO [NO]
>IF $ANS < > "YES [PARDON]
>END

>N

? TO "NO
>PRINT "BYE
>5T0P

>END

>N

7 TO "PARDON

>PRINT [PARDON! "YES" OR "NO" 7]

LOGICAL OPERATIONS

>MAKE "ANS READC PRINT []
>IF :ANS < > "YES [PARDON]
>END

b \V4

Jl, J2, and READC are I/0 Commands whereas IF, RCPEAT, STOP, and
WAIT are Control Flow Commands. J1 and J2 recognise the
direction of the joysticks, IF determines whether an
instructionlist should be executed, REPEAT repeats the
instructionlist for a specified number of times, STOP halts the
procedure, and WAIT makes Rogo wait for a specified time period.

Don't worry if you find the above description hard to
understand. Details are forthcoming. We include these commands
here because Logical Operations go hand in hand with other
commands, especially Control Flow Commands.

The above example is a procedure that consists of 5 simple
modules, START, GAME, ASK, NO, and PARDON. START initiates the
procedure. You bhave 60 time units to press the firebuttons.
Then GAME checks which button you have pressed. After that, ASK
sees whether you want to continue. If you do, you will be
brought to GAME again. If you don't, NO will stop the
procedure.

8-3

LOGICAL OPERATIONS

PARDON will be executed if you do not give a concrete answer in
ASK. Note that PARDON calls itself within the same procedure.
It is a RECURSIVE command. It will lcop back to the beginning
of PARDON if you do not indicate "YES" or "NO". More about
recursive commands in Appendix D.

8.1 < (OPERATION)

Outputs true when <condition 1> is less than <condition 2>;
otherwise false.

Syntax: <condition 1> < <condition 2>

NOTE : <condition 1> and <condition 2> can be numbers,
Arithmetic Operations, letters, or variables. The same
rules apply to <, >, =, <z, <>, and >=.

EXAMPLE :
2?2 IF 2 < 3 [PRINT [2 IS LESS THAN 31]
2 1S LESS THAN 3

IF is a Control Flow Command that executes an instructionlist
when a certain condition is met. In the above example, 2 < 3 is
the condition for the IF command and [PRINT [2 IS LESS THAN 31]
is the instructionlist. Since 2 < 3 is true, the instructionlist
is executed. We will discuss the details of Control Flaw
Commands in the next chapter. Let's concentrate on Logical

Operations for the time being.

In2<3, 2 is <condition 1> and 3 is <condition 2>. As
<condition 1> is less than <condition 2>, Rogo outputs true.

EXAMPLE :

? IF 10 < 1 [PRINT [WHO SAYS 10 IS GREATER THAN 17]]

LOGICAL OPERATIONS

If you enter the above example, nothing will be displayed on the
screen because 10 < 1 is false. In 10 < 1, 10 is <condition 1>
and 1 1is <condition 2>. As <condition 1> is not less than
<condition 2>, Rogo outputs false.

EXAMPLE :

7 IF SUM 20 5 < QUOT 100 2 [PRINT "YES]

YES

7?7 IF 0 < PROD 3 4 [PRINT [0 IS LESS THAN 12]1]
0 IS LESS THAN 12

EXAMPLE:

? IF "A < "B [PRINT [THE ASCII CODE OF A IS LESS THAN THAT OF
B.1]

THE ASCII CODE OF A IS LESS THAN THAT OF B.

Letters are compared according to their respective ASCII codes.
ASCII stands for American Standard Codes for Information
Interchange (read your User's Manual for details). The ASCII of
A is 65 and that of B is 66.

NOTE ¢ Letters must be compared with letters only. Make sure
you put a gquotation mark before the letter which is
regarded as a word in Rogo.

EXAMPLE :
? IF "ABC < "D [PRINT [ABC IS LESS THAN D]]
ABC IS LESS THAN D

When the conditions comprise a number of characters, they are
compared character to character, from left to right. Since the
first character and only character in <condition 2> is D (ASCII
code = 68) which is greater than A (ASCII code = 65), ABC is
less than D.

8-5

LOGICAL OPERATIONS

EXAMPLE :

7 IF “ABC < "ABCD [PRINT [ABC IS LESS THAN ABCD]]

ABC IS LESS THAN ABCD

<condition 1> and <condition 2> are equal up to the third
character, so Rogo goes on comparing the fourth character. As
there is not a fourth character in <condition 1>, it is regarded

as lesser.

The conditions in Logical Operations also take variables:

EXAMPLE::

7 MAKE "A 10 MAKE "B 12

? IF :A < :B [PRINT [VARIABLE A IS LESS THAN VARIABLE B]]
VARIABLE A IS LESS THAN VARIABLE B

? IF SUM :A :8 < 15 [PRINT [HOW CAN IT BE?]]

8.2 > (OPERATION)

Outputs true when <{condition 1> is greater than
<condition 2>; otherwise false.

Syntax: <condition 1> > <condition 2>

EXAMPLE :

? IF S > 3 [PRINT [5 IS GREATER THAN 3]]

5 IS GREATER THAN 3

? IF DIFF 10 3 > SUM 10 7 [PRINT "NO!!]

8-6

LOGICAL GPERATIONS

? IF "B > "A [PRINT [B IS GREATER THAN Al]
B IS GREATER THAN A

? IF "ABCD > "ABC [PRINT "TRUE]

TRUE

7?7 MAKE "A 100 MAKE "B 10

7 IF QUOT :A :B > PROD :A :B [PRINT [ARE YOU SURE?]]

8.3 = (OPERATION)

Outputs true when <condition 1> is equal to <condition 2>;
otherwise false.

Syntax: <condition 1> = <condition 2>
EXAMPLE:

7?7 IF 1 = 1 [PRINT [THAT'S TRUE]]

THAT'S TRUE

? IF PROD SUM 2 8 10 = 100 {PRINT "YES]
YES

? IF "A = "A [PRINT [A IS EQUAL TO A]]

A IS EQUAL TO A

? MAKE "A 10

7?7 IF :A = SUM 5 :A [PRINT [DON'T KID ME!]]

i.OGICAL OPERATIONS

8.4 <= (OPERATION)

Qutputs true when <condition 1> is less than or equal to
<condition 2>; otherwise false.

Syntax: <condition 1> <= <condition 2>

EXAMPLE :

? IF 3 <= 5 [PRINT [IT'S TRUE BECAUSE 3 IS LESS THAN 5]]
IT'S TRUE BECAUSE 3 IS LESS THAN 5

7 IF 5¢<

S [PRINT [ROGO OUTPUTS TRUE AS 5 IS EQUAL TO 5]]
ROGO QUTPUTS TRUE AS 5 IS EQUAL TO 5
? IF SUM 2 2 <= 10 [PRINT "TRUE]

TRUE

? IF "ABC <= "A [PRINT [THE WORLD IS FLAT]]

? MAKE "A 1 MAKE "B 2

? IF SUM :A :B <= 3 [PRINT [ROGO OUTPUTS TRUE]]

ROGO OUTPUTS TRUE

8.5 >= (OPERATION)

Outputs true when <condition 1> is greater than or equal to

{condition 2>; otherwise false.

Syntax: <condition 1> >z <condition 2>

8-8

LOGICAL OPERATIONS

EXAMPLE :

? IF PROD 10 10 >= SUM 90 10 [PRINT "TRUE]

TRUE

7 IF "ABC >= "ABCDE [PRINT "FALSE]

7?7 MAKE "A 10 MAKE "B 20

? IF :B >= :A [PRINT [ROGO OUTPUTS TRUE AS 20 > 10]]

ROGO QUTPUTS TRUE AS 20 > 10

8.6 < > (OPERATION)

Outputs true when <condition 1> is not equal to <condition 2>;
otherwise false.

Syntax: <condition 1> <> <condition 2>
EXAMPLE :

? IF SUM 2 2 <> DIFF 2 2 [PRINT [SUM 2 2 IS NOT EQUAL TO DIFF
2 2])

SUM 2 2 IS5 NOT EQUAL TO DIFF 2 2
? MAKE "A 45 MAKE "B 5

? IF QUOT :A :B <> 10 [PRINT {QUOT 45 5 SHOULD EQUAL 9]]
QUOT 45 5 SHOULD EQUAL 9

LOGICAL OPERATIGNS

8.7 AND (OPERATION)

Outputs true when both <condition 1> and <condition 2> is
true; otherwise false.

Syntax: AND <condition 1> <condition 2>

NOTE : The conditions in AND, NOT, OR, and XOR must be
operations concerning true or false.

EXAMPLE :

? IF AND SUM 2 2 = 4 10 < 100 [PRINT [BOTH CONDITIONS ARE TRUE]]
BOTH CONDITIONS ARE TRUE

In the above example, SUM 2 2 = 4 is <condition 1> and 10 < 100
is <condition 2>. Since both conditions are true, Rogo outputs
true and executes the instructionlist of IF.

? MAKE "A 1 MAKE "8 2

? IF AND PROD :A :B = 2 5 >= 8 [PRINT "TRUE]

Rogo will not execute the instructionlist since only

-<condition 1> is true.

8.8 NOT (OPERATION)

Outputs true when a certain condition is not satisfied;
otherwise false.

Syntax: NOT <condition>
EXAMPLE :

2 IF NOT SUM 2 2 = 4 [PRINT [SuM 2 2 IS NOT £QUAL TO 4]]
8-10

LOGICAL OPERATIONS

SUM 2 2 = 4 is the condition. Since SUM 2 2 = 4 is true, NOT SUM
2 2 = 4 is not satisfied. Therefore, Rogo will not execute the
instructionlist.

EXAMPLE :

? IF NOT PROD 3 4 <= O [PRINT [12 IS GREATER THAN O]]

12 IS GREATER THAN O

As the condition in the NOT operation is not true, Rogo outputs
true and consequently, the instructionlist is executed.

8.9 OR (OPERATION)

Outputs true when either or both <condition 1> and
<condition 2> are true; otherwise false.

Syntax: OR <condition 1> <condition 2>

EXAMPLE :

? IFOR 2> 1 PROD S5 5 = 20 [PRINT [CONDITION 1 IS TRUE]]
CONDITION 1 IS TRUE

In the OR operation, 2 > 1 is <condition 1> and PROD 5 5 = 20 is
{condition 2>. As one of the conditions is satisfied, Rogo
outputs true and executes the instructionlist.

EXAMPLE :

? MAKE "X 3 MAKE "Y 5

? IF OR PROD :X :Y = 15 SUM :X :Y > O [PRINT [BOTH CONDITIONS
ARE TRUE]]

BOTH CONDITIONS ARE TRUE

8-11

LOGICAL OPERATIONS

7 IF OR QUOT :X :Y = O DIFF :X :Y >= O [PRINT [NEITHER CONDITION
IS TRUE]]

8.10 XOR

Qutputs true when either <condition 1> or <condition 2> is
true; otherwise false.

Syntax: XOR <condition 1> <condition 2>
EXAMPLE ¢

? IF XOR SUM 2 8 = 10 DIFF 5 3 < 0 [PRINT [ONE CONDITION IS
TRUE]]

ONE CONDITION IS TRUE
? MAKE "X 12 MAKE "Y 3

? IF XOR PROD :X :Y > QUOT 12 3 SWM :X :Y > DIFF :X :Y [PRINT
[BOTH CONDITIONS ARE TRUE]]

Since both conditions are true, Rogo outputs false and the
instructionlist is not executed.

8.11 CHAPTER SUMMARY

PRIMITIVE SYNTAX DESCRIPTION
< {condition 1> < Outputs true when <condition 1>
{condition 2> is less than <condition 2>;

otherwise false.

8-12

LOGICAL OPERATIONS

PRIMITIVE SYNTAX DESCRIPTION
> <condition 1> > Outputs true when <condition 1>
<condition 2> is greater than <condition 2>;
otherwise false.
= <condition 1> = Outputs true when <condition 1>
{condition 2> is equal to <condition 2>;
otherwise false.
<= <condition 1> <= Outputs true when <condition 1>
<condition 2> is less than or equal to
<condition 2>; otherwise false.
>= <condition 1> >= Outputs true when <condition 1>
<{condition 2> is greater than or equal to
<condition 2>; otherwise false.
<> <condition 1> < > | Outputs true when <condition 1>
<condition 2> is not equal to <condition 2>;
otherwise false.
AND AND <condition 1> | Outputs true when both <condition
{condition 2> | 1> and <condition 2> are true;
otherwise false.
NOT NOT <condition> Outputs true when the condition

is false; otherwise false.

8~-13

LOGICAL OPERATIONS

PRIMITIVE SYNTAX DESCRIPTION
OR OR <condition 1> |Outputs true when either or both
<condition 2> |<condition 1> and <condition 2>
are true; otherwise false.
XOR XOR <condition 1> |Qutputs true when either
<condition 2> |<condition 1> or <condition 2>

is true; otherwise false.

8-14

CHAPTER 9
CONTROL FLOW COMMANDS

IF, TEST, IFTRUE, IFFALSE, REPEAT, STOP, WAIT, OP, and RUN are
the primitives that control the flow of instructions in Rogo.
They help Rogo decide if a certain instructionlist should be
executed when a certain condition is met.

EXAMPLE :

7?7 TO "WARMUP

>PRINT [CHOOSE A DIRECTION TO MOVE: BC, BA, LU, LD, FU, FD, WC,
WA, FO, OR FC.]

>MAKE "ANS READL

>IF :ANS = [BC] [BC 200] IF :ANS = [BA] [BA 200]
>IF :ANS = {LU] [LU 200] IF :ANS = [LD] [LD 200]
>IF :ANS = [FU] [FU 200] IF :ANS = [FD] [FD 200]
>IF :ANS = [WC] [WC 200] IF :ANS = [WA] [WA 200]
>IF :ANS = [FO] [FO 200] IF :ANS = [FC] [FC 200]

>PRINT [TRY AGAIN? "YES" OR "NO™.]

>MAKE "ANSWER READL

>TEST :ANS = [YES]

>IFFALSE [REPEAT 3 [PRINT [TOD BAD!!]] STOP]

>1t TRUE [WARMUP]

>END

>N

Note that the instructionlist of the IFTRUE command of the above
procedure recurs the execution of the procedure. When a
procedure calls itself, it 1is RECURSIVE. We will discuss

recursive commands in detail in Appendix D.
9-1

CONTROL FLOW COMMANDS

9.1 IF (COMMAND)

Executes the instructionlist if the <condition> is true.

Syntax: IF <condition> <instructionlist>

NOTE ¢+ The <condition> in IF can be a number, a word, a list,
a variable, a Logical Operation, or an I/0 Command
involving Jl or J2.

EXAMPLE :

? MAKE "JOYSTICK1 J1 1

? IF :JOYSTICK1 [PRINT [JOYSTICK 1 IS PUSHED FORWARD]]

JOYSTICK 1 IS PUSHED FORWARD

We suppose you have connected a joystick to Joystick Port 1 of

your machine. If you haven't, try to connect it now (read 10.5

for details). If you push your joystick forward as you enter the

first line, J1 1 outputs true which becomes the value of

JOYSTICK1. As :JOYSTICK1 is true, the instructionlist of IF is

executed. The above example 1s the same as the one below:

EXAMPLE :

? 1F J1 1 [PRINT [JOYSTICK 1 IS PUSHED FORWARD]]

EXAMPLE :

7?7 MAKE "A 4 MAKE "B 5

7 1IF PROD :A :B > SWM :A :B [PRINT DIFF :B :A]

9-2

CONTROL FLOW COMMANDS

In this example, PROD :A :B > SWM :A :B is the condition of IF,
whereas [PRINT DIFF :B :A] is the instructionlist. Since the
condition outputs TRUE, the instructionlist is executed.
EXAMPLE :

7 T0 "WAVE

>LD 200 FD 200 LU 200 FU 200 WC 400 FO 150

>END

>NZ

? TO "ASK

>PRINT [WHAT IS THE PRODUCT OF 12 AND 57]

>MAKE. "ANS READL

>IF :ANS = [60] [WAVE]

>END

>N

READL is an I/0 command which reads the keyboard and outputs
what you have typed (read 10.4 for details). Whatever is read
by READL is regarded as a list; this explains why 60 (the
product of 12 and 5) must be enclosed in square brackets though
it is a number by nature. Notice that the instructionlist of IF
in the above procedure is a user-defined command defined
earlier.

When you execute ASK, Rogo poses the question: "WHAT IS THE
PRODUCT OF 12 AND 5?" If you get it right, Rogo will execute the
instructionlist and moves the Robotarm as specified in WAVE.

CONTROL FLOW COMMANDS

9.2 TEST (OPERATION)

Remembers if a specified condition is true or false for
future use in IFTRUE and IFFALSE commands.

Syntax: TEST <condition>

NOTE : The <condition> can be a Logical Operation or an 1/0
Operation concerning true or false (e.g. J1).

Since TEST is closely related to IFTRUE and IFFALSE, we include
all three in the following examples to give you a clearer
picture of how they work.

EXAMPLE :

? TEST SUM 2 2 = QUOT 20 5

? IFTRUE [PRINT [SUM 2 2 IS EQUAL TO QUOT 20 5]]
SM 2 2 IS EQUAL TO QuoT 20 5

IFTRUE is a Control Flow Command which executes an
instructionlist if the output in the latest TEST operation 1is
true (read 9.3 for details). In the above example, the condition
of TEST is SUM 2 2 = QUOT 20 5 which is true. Rogo outputs
true. The IFTRUE command that follows checks whether the output
of the TEST operation is true. It is, so the instructionlist is
then executed. Enter the line below and see what happens:

? IFFALSE [PRINT [SUM 2 2 IS NOT EQUAL TO QUOT 20 5]]

IFFALSE is another Control flow Command that executes an
instructionlist if the output in the latest TEST operation is
false (read 9.4 for details). Since the output of TEST is true,
Rogo outputs false in the IFFALSE command and the
instructionlist is not executed.

-4

CONTROL FLOW COMMANDS

You can edit the ASK procedure as follows:

? EDIT "ASK

>PRINT [WHAT 1S THE PRODUCT OF 12 AND 57]

>MAKE "ANS READL

>TEST :ANS = [60]

>IFTRUE [WAVE] IFFALSE [PRINT "SORRY!]

>END

>AL

Before you execute ASK, make sure you have defined WAVE. The
TEST operation in ASK checks if the value of ANS equals 60. If

it does, the instructionlist of IFTRUE is executed; otherwise
the instructionlist of IFFALSE is executed instead.

9.3 IFTRUE (COMMAND)

Executes the instructionlist if the output of the latest
TEST operation is true.

Syntax: IFTRUE <instructionlist>

Similar to IF, the instructionlist of IFTRUE can be a user-
det'ined command or any Rogo command or operation. The same rule
applies to IFFALSE.

EXAMPLE :

? TEST 3 > 2

? IFTRUE [PRINT "TRUE] IFFALSE [PRINT "FALSE]

TRUE
9-5

CONTROL FLOW COMMANDS

7 IFTRUE [LU 100 FU 300 WC 200] IFFALSE [PRINT "FALSE]

Rogo prints TRUE on screen as soon as you enter the first IFTRUE
and IFFALSE commands. The Robotarm moves as specified after the
second IFTRUE and IFFALSE commands have been entered. Though it
is the second IFTRUE used in the above example, Rogo still reads
the output in TEST 3 > 2. For IFTRUE and IFFALSE commands, Rogo
always refers to the latest TEST operation.

EXAMPLE:

? MAKE "A 2 MAKE "B 4

? TEST SUM :A :B = 6

? IFTRUE [FD 150 WC 300 FC 50]

7?7 TEST PROD :A :B > O

? IFTRUE [WA 200 LD 100 BC 200 BA 200]

9.4 IFFALSE (COMMAND)

Executes the instructionlist if the output of the latest
TEST is false.

Syntax: IFFALSE <instructionlist>

We have tried quite a number of examples in the last two
sections. If you still have a joystick connected to the Joystick
Port 1 of your machine, you can try the following:

CONTROL FLOW COMMANDS

EXAMPLE :

7 10 "JOY

> TEST J1 1 IFTRUE [FU 100] IFFALSE [WC 100]
> TEST 31 3 IFTRUE [BC 100] IFFALSE [wC 100]
> TEST J1 5 IFTRUE [FD 200] IFFALSE [WC 100]
> TEST J1 7 IFTRUE [BA 2001 IFFALSE [WC 100]
> M

7 REPEAT 10 [JoY}

9.5 REPEAT (COMMAND)

Repeats the instructionlist for a specified number of times.

Syntax: REPCAT <number of times> <instructionlist>

NOTE ¢ You must enter a positive whole number to specify the

nunber of times to repeat the instructionlist.

EXAMPLE :

7 REPEAT 2 [PRINT [ROGO IS INTERESTING AND VERSATILE]]
ROGO IS INTERESTING AND VERSATILE

ROGO IS INTERESTING AND VERSATILE

The above example repeats the instructionlist twice.

CONTROL FLOW COMMANDS

EXAMPLE:
? REPEAT 10 [LU 300 LD 300 FU 300 fD 300]

The Robotarm will not stop until the instructionlist has been
executed 10 times. The example below does the same job:

EXAMPLE :

? TO "PLAY

>LU 300 LD 300 FuU 300 FD 300
>END

>AZ

? REPEAT 10 [PLAY]

EXAMPLE :

? MAKE "CDUNT 1

7 REPEAT 5 [MAKE "COUNT SWM :COUNT :COUNT PRINT :COUNT LD 200 FD
200 FU 200 LU 200 WC 100]

16
32

In the MAKE command, the value of COUNT is 1. When it comes to
the 1instructionlist of REPEAT, the value of COUNT becomes the
summation of itselfy that means 2. 2 is then printed and Rogo
repeats the instructionlist again. The value of COUNT doubles,
the result is printed, and Rogo repeats the instructionlist and

SO0 on.

9-8

CONTROL FLOW COMMANDS

9.6 STOP (COMMAND)

Stops a running procedure and returns control to the top

level.

Syntax: STOP

STOP is very helpful if you want to stop the execution of a
procedure when a specified condition occurs:

EXAMPLE :
? MAKE "BACK 5

? REPEAT 10 [MAKE "BACK DIFF :BACK 1 PRINT :BACK LD 300 FU 300
FD 300 LU 300 WC 200 IF :BACK = O [STOP]]

As you may notice, the instructionlist of REPEAT is executed 5
times instead of 10. When the value of BACK becomes 0, Rogo
executes the instructionlist of IF and thus stops executing the
instructionlist of REPEAT.

9-9

CONTROL FLOW COMMANDS

EXAMPLE:

? T0 "PLAY

>PRINT [WANT ME TO MOVE? "YES" OR '"NO".]

>MAKE "ANS READL

>IF :ANS = [NO] [PRINT [TOO BAD!!] STOP]

>REPEAT 10 [PRINT "G0OOD LU 200 FD 200 FU 300 LD 200 WC 100]

>END

>AZ

The STOP in the IF command of the above procedure stops the

procedure when the list read is NO.
will not be executed.

9.7 WAIT (COMMAND)

The rest of the procedure

Waits for a specified time period .

Syntax: WAIT <time period>
EXAMPLE :

? TO "SAMPLE1L

>WA 20

>WA 20

WA 20

>END

>hL
9-10

CONTROL FLOW COMMANDS

? TO "SAMPLEZ2

>WA 20

DWAIT 120

>WA 20

>WAIT 120

>WA 20

>END

>AZ

In SAMPLEL, the wrist of the Robotarm will rotate anticlockwise
continuously Ffor 60 time units. In SAMPLE2, the wrist will
rotate for 20 time units, wait awhile, rotate for another 20

time units, wait again and then rotate for 20 time units more.

WAIT is useful in delaying the flow of a procedure. It gives you
some time to read or think:

EXAMPLE :

? TO "FAKE

>PRINT [DON'T COME NEAR!! YOU HAVE 5 SECONDS TO ESCAPE.]

>WAIT PROD 5 60

>WA 400 FO 200 PRINT [wOw!! GOTCHA!]

>END

>NZ

Note that apart from positive integers, WAIT also accepts

Arithmetic Operations as inputs.

9-11

CONTROL FLOW COMMANDS

9.3 OP (COMMAND)

Makes a specified Rogo object an output of a procedure.

Syntax: OP <object>

NOTE : Though OP is a command, the procedure in which it is
defined is an operation and OP is applicable ONLY in a
procedure.

EXAMPLE :

? TO "ELEANOR

>0P "HELEN

>END

>N

? PRINT ELEANOR

HELEN

OP is a command that helps you to define an operation. In the

above procedure, ELEANOR is defined to hold HELEN as an output.

So, when you print ELEANOR, Rogo prints the output instead. OP

also accepts a list:

EXAMPLE:

7 TO "LINK :NAME

>PRINT [HOW ARE YOU?] OP :NAME

>END

>AL

9-12

CONTROL FLOW COMMANDS

? PRINT LINK "SAM

HOW ARE YOU?

SAM
? TO ABS :N
>TEST :N < O

SIFTRUE [OP DIFF O :N] IFFALSE [OP :N]
>END

>N

? PRINT ABS -4

4

? PRINT ABS DIFF 4 5

1

In the above example, DIFF 4 5 is -1. Rogo then prints the
absolute value of -1 which equals 1. Note that OP will exit the
procedure automatically once it is executed.

NOTE : DOP is not supported in Version 1.0 of the Rogo
Interface.

9.9 RUN (COMMAND/OPERATION)

Runs an instructionlist.

Syntax: RUN <instructionlist>

9-13

CONTROL FLOW COMMANDS

NOTE : <instructionlist> can be a user-defined command, a
primitive, or an operation. If the specified
<instructionlist> 1is an operation, RUN will output
whatever the <instructionlist> outputs.

EXAMPLE :

TO "CALCULATE :INPUT

>PRINT RUN :INPUT

>END

>AZ

? CALCULATE [SUM 2 3]

? CALCULATE [PROD 22.1 5]

110.5

In the CALCULATE procedure, RUN functions as an operation. It
outputs the result of the calculation which is then printed by
the PRINT command.

What makes RUN indispensable is that it takes a list as an
instruction. Try to edit CALCULATE and omit RUN in the PRINT
command. Then execute CALCULATE again and notice the difference
it makes:

? CALCULATE [SuM 2 3]

SUM 2 3

9-14

CONTROL FLOW COMMANDS

EXAMPLE :

7?7 TO EXAM :CONDITION :INSTRUCTL
>TEST RUN :CONDITION IFFALSE [STOP]
>RUN :INSTRUCTL

>EXAM :CONDITION :INSTRUCTL

>END

>NZ

7 MAKE "NUM 1

? EXAM [NWM < 5] [PRINT :NUM MAKE "NUM SUM :NUM 1]

EXAM is a procedure that takes 2 inputs, one is a condition, the
other is an instructionlist. The RUN in TEST is an operation,
whereas the one after the IFFALSE command is a command since it
will execute the instructionlist if the condition is true.

To execute EXAM, you have to specify the condition and
instructionlist first. In the above example, the condition is
[:NUM < 5] and the instructionlist is [PRINT :NUM MAKE "NUM SUM
:NUM 1]. The number to begin is specified in the MAKE command.

Suppose we begin with 1 which is less than 5. RUN outputs TRUE
and so does TEST. The second RUN then executes the
instructionlist which prints the number, increases it by 1,
prints the result and so on. Note that EXAM is recursive. It
loops back to the beginning of the procedure as long as the
nunber 1is less than 5. The IFFALSE command is added as a
control. When the number equals 5, the procedure stops. 9-15

CONTROL FLOW COMMANDS

9.10 CHAPTER SUMMARY

PRIMITIVE SYNTAX DESCRIPTION
1F IF <condition> Executes the idinstructionlist
<instructionlist> | if the condition is true.
TEST TEST <condition> Remembers if the condition is
true or false for future use
by IFTRUE and IFFALSE
commands.
IFTRUE IFTRUE Executes the instructionlist
<instructionlist> if the output of the latest
TEST operation is true.
IFFALSE IFFALSE Executes the instructionlist
<instructionlist> if the output of the latest
TEST operation is false.
REPEAT REPEAT Repeats the instructionlist
<number of times> for a specified number of
<instructionlist> times.
SToP sTopP Stops execution and returns
control to the top level.
WAILT WAIT <time period> Waits for a specified time

period.

9-16

CCNTROL FLOW COMMANDS

PRIMITIVE SYNTAX DESCRIPTION

orP 0P <object> Makes a specified Rogo object
an output of a procedure.

RUN RUN <instructionlist>|Runs an instructionlist.

9-17

CHAPTER 10
/O COMMANDS AND OPERATIONS

The primitives that display inputs on screen, locate the print
position, read the keyboard, and communicate with joysticks and
cassette recorders are known as 1/0 primitives. Rogo has 8 of
these: PRINT, LOCATE, READC, READL, J1, J2, SAVE "CAS, and LOAD
"CAS.

EXAMPLE:

TO "CHECK :LIMIT

>IF :NUM2 = :LIMIT [PRINT [TOTAL CORRECT ANSWERS:] PRINT :SCORE
PRINT [THAT'S ALL FOLKS! SEE YOU LATER.] STOP]

>END

>N

TO "RIGHT

>REPEAT 3 [PRINT "RIGHT FU 50 FD 50]
>MAKE "SCORE SWM :SCORE 1

2END

>AZ

TO "WRONG
>REPEAT 3 [PRINT "WRONG BC 50 BA 50]
>END

>ANZ

10-1

1/0 COMMANDS AND OPERATIONS

? TO "TRY :NAME

SPRINT [TRY AGAIN? "YES" OR "NO".]
>MAKE "RESPONSE READL

>TEST :RESPONSE = [YES]

>IFFALSE [PRINT [TOTAL CORRECT ANSWERS:] PRINT :SCORE PRINT [BYE
FOR NOW.] STOP}

>IFTRUE :NAME

>END

>AL

TO "TT :NUM1

>CLS PRINT [WHAT IS THE PRODUCT OF] LOCATE 24 1 PRINT :NUML
>LOCATE 28 1 PRINT [X] LOCATE 30 1 PRINT :NUMZ

>MAKE "ANS READC

>IF :ANS = PROD :NUM1 :NUM2 [RIGHT CHECK 10 MAKE "NUM2 SUM
:NUM2 1 TRY [TT :NUM1]]

>WRONG CHECK 10

PMAKE "NUM2 SUM :NUM2 1
>TRY [TT :NUM1]

>END

>ANZ

10-2

I/0 COMMANDS AND OPERATIONS

7 T8 "START
>MAKE "NUM2 1
>MAKE "SCORE 0

>PRINT [WHAT NUMBER SHALL WE START WITH?] PRINT [(YOU CAN ENTER
NOT MORE THAN 3 DIGITS.)]

>MAKE "NUM1 READC
>TT :NUM1

>END

>AZ

The above example is a typical Rogo procedure which is made up
of tiny modules. Though each of them can stand on its own, they
are linked in such a way that they can be started by typing only
one command. The 6 modules that constitute the procedure are
START, TT, TRY, WRONG, RIGHT, and CHECK. Together they form a
quiz that checks how good you are at the times table.

START is the command that starts all the modules. It sets NUM2
to 1, total score to 0, reads a number from you (NUM1} and
sends it to TT. TT poses a question asking for the product of
NUM1 and NUM2. If you get it right, TT sends you to RIGHT which
moves the forearm, and registers your score. If you were wrong,
TT executes WRONG which moves the base.

TT then calls CHECK to check whether NUMZ has reached the limit
of 10. If it has, CHECK will display the total score and
stop the procedure. If it hasn't, TT increases NUM2 by 1 and
calls TRY to see if you would like to go on. If you do, TT will
pose another question and if you don't, TRY will display your
total score and stop the procedure.

10-3

I/0 COMMANDS AND OPERATIONS

10.1 PRINT (COMMAND)

Prints its input on screen.

Syntax: PRINT <input>

PRINT is a very useful command whose input can be a word, a
list, a number, an Arithmetic Operation, or a variable.

EXAMPLE :
? PRINT "HELLO
HELLO

A word must be preceded by a double quotation mark; otherwise
you will get an error message.

EXAMPLE :
? PRINT [HELLO, HOW ARE YOU?]

HELLO, HOW ARE YOU?

A list must be enclosed in a pair of square brackets. If the
list is empty, PRINT will leave a blank line on the screen.

EXAMPLE
7?7 PRINT 1234
1234

A number needs not be preceded by a double quotation mark; nor
should it be enclosed in a pair of sqguare brackets.

10-4

1/0 COMMANDS AND OPERATIONS

EXAMPLE :
? PRINT SUM QUOT 20 4 6
11

SM QUOT 20 4 6 is an Arithmetic Operation. PRINT prints its
output on screen. The input of PRINT can also be a variable:

EXAMPLE:
7 MAKE "CANADA "OTTAWA
? PRINT '"CANADA PRINT :CANADA

CANADA
OTTAWA

In the MAKE command, "CANADA" bears a value of "OTTAWA". The

first PRINT command asks Rogo to print the word “"CANADA" and the
second its value "OTTAWA".

10.2 LOCATE (OPERATION)

Locates the character position for PRINT.

Syntax: LOCATE <column> <row>

A pair of co-ordinates represents a point on the 40-column
screen. The value of the column ranges horizontally from 1
through 40, whereas that of row ranges vertically from 1
through 24.

EXAMPLE :

? LOCATE 20 10

7 PRINT [WHAT ARE YOU DOING?)

10-5

I/0 COMMANDS AND OPERATIONS

The 1list in PRINT will be printed at the 20th column and 10th
row. The position to print is specified in the LOCATE operation.
Now, enter another PRINT command:

EXAMPLE :

? PRINT [WHY SHOULD I TELL YOU?]

Oops! The list is printed back at the default position. You have

to use a L0OCATE operation for every PRINT command and the LOCATE
position must be specified before the PRINT command.

EXAMPLE :

7 LOCATE 5 5 PRINT [WHAT ARE YOU DOING?]

2 LOCATE 25 20 PRINT [WHY SHOULD I TELL YOU?]

If the position specified in the LOCATE operation is occupied by
other display, the printed list will write over the original

display. To avoid confusion, you had better clear the Text
Screen first before printing something:

EXAMPLE :
? CLS LOCATE 20 10 PRINT "BONJOUR!!

CLS is a Screen Command that clears the screen and locates the
cursor at the upper left hand cornmer of the screen (read 12.1
for details).

10.3 READC (OPERATION)

Reads the keyboard and outputs the first word entered.

Syntax: READC

1G-6

I/0 COMMANDS AND OPERATIONS

EXAMPLE :
7 READC

Rogo will read the keyboard and output the first word typed.
The word is delimited by a space.

EXAMPLE :

7 PRINT READC

HOW ARE YQU

HOW

Say you enter HOW ARE YOU. When Rogo reads the keyboard, it
notices that there is a space after HOW which is then regarded
as the first word and whatever follows the space is discarded.
When Rogo prints READC, only HOW is printed.

EXAMPLE :

? PRINT READC

Al234567890*"]]

Al234567890%"[]

7 PRINT READC

1ABC123

1ABC123

The word read and output by READC can be made up of any
alphanumeric characters and symbols as long as it does not

exceed 254 characters. But the concept is a little bit different
when a word read by READC becomes the value of a variable:

10-7

I1/0 COMMANDS AND OPERATIONS

EXAMPLE:

? MAKE "A READC PRINT :A

ABC123

ABC123

? MAKE "A READC PRINT :A

123ABC456

123

You enter 123ABC456 and MAKE it into the value of A. Since it
begins with a number, the value of A becomes a number. 5o, when
you print the content of A, only 123 is printed and the rest is
ignored.

EXAMPLE :

? MAKE "A READC

123

? IF :A = 123 [PRINT [123 IS A NUMBER]]

123 IS A NUMBER

7 MAKE "B READC

AB1

? IF :B = "AB1 [PRINT [ABl IS A WORD]]

ABl1 1S A WORD

Notice that in IF commands, a word read by READC must be
preceded by a double quotation mark.

10-8

1/0 COMMANDS AND OPERATIONS

EXAMPLE :
? TO "DANCE
>PRINT [WANT ME TO DANCE? "Y"™ OR "N".]

>MAKE "ANS READC

>IF :ANS = "N [PRINT [FORGET IT] STOP]

>IF :ANS "y [PRINT "GOOD]

>REPEAT 10 [BC 200 1D 200 FU 300 LD 200 WC 200 FC 150]
>END

>N

10.4 READL (OPERATION)

Reads the keyboard and outputs the line entered as a list.

Syntax: READL

NDTE : When READL is executed, the line to be read 1is
terminated by pressing ENTER.

EXAMPLE :
? READL

Whatever you type will be read and output by READL.

10-9

I/0 COMMANDS AND OPERATIONS

EXAMPLE :

7 MAKE "LINE READL REPEAT 3 [PRINT :LINE]
I'LL NEVER TALK IN CLASS AGAIN

I['LL NEVER TALK IN CLASS AGAIN

I'LL NEVER TALK IN CLASS AGAIN

I'LL NEVER TJALK IN CLASS AGAIN

The first line is entered by you. Rogo reads the line and
repeats printing it thrice as specified.

EXAMPLE :

? 10 "QuiZ

>PRINT [WHERE IS THE HOTTEST PLACE ON EARTH?]
>MAKE "ANS READL

>TEST :ANS = [DESERT]

>IFFALSE [PRINT "SORRY! BA 300 BC 300 STOP]
>IFTRUE [PRINT "GOOD! FD 300 FU 300 STOP]
>END

>NZ

Since the answer you type is output in a list, the word DESERT
must be enclosed in square brackets.

10-10

I1/0 COMMANDS AND OPERATIONS

10.5 J1 (OPERATION)

Outputs true if the specified switch of Joystick Port 1 of the
computer is closed.

Syntax: J1 <switch number>

J1l is used to recognise the direction of the joystick connected
to the Joystick Port 1 of your MSX computer.

Before we go on, let's connect the joysticks first:

1. Switch off your computer and monitor.

2. Connect a joystick to the Joystick Port 1 of your computer.
Do the same for Joystick Port 2. Make sure the joysticks are

compatible with your machine. Read your User's Manual for
details.

Fig. 10.1 Connecting Joysticks

10-11

I/0 COMMANDS AND OPFRATIONS

A joystick can move in 9 directions:

7é:i::9’///2 3
N

EXAMPLE:

Jl 2 - Outputs true when the joystick in Joystick Port 1 moves
to the Northeast.

J1 5 - Qutputs true when the joystick in Joystick Port 1 moves
to the South.

Since Jl and J2 work alike, we will give you a thorough example
in 10.6.

10.6 J2 (OPERATION)

Outputs true if the specified switch of Joystick Port 2 of the
computer is closed.

Syntax: J2 <switch number>

EXAMPLE :

? 10 "J CTRL

>IF J1 1 [LD 200] IF J2 1 [FD 200]
>IF J1 3 [BA 200] If J2 3 [WA 200]

>IF J1 5 [LU 200] IF J2 5 [FU 200]

10-12

I/0 COMMANDS AND OPERATIONS

>IF J1 7 [BC 2001 IF J2 7 [wC 200]

>END

>AZ

? REPEAT 1000 [J CTRL]

The procedure J CTRL can only detect one move every time it is
executed. REPEAT 1000 [J CTRL] repeats the execution of J CTRL

for a thousand time so that you can play with your joysticks for
a while.

10.7 SAVE “CAS (COMMAND)

Saves a workspace onto a tape.

Syntax: SAVE "CAS

NOTE : SAVE "CAS saves all the procedures in the workspace.
The workspace 1is a part of the RAM where the
procedures are stored.

STEPS

1. Prepare a tape (read 3.4 for details).

2. Type SAVE "CAS on the Text Screen. DON'T press ENTER yet.
The following message will be displayed on the screen:

PLEASE REWIND TAPE TO THE BEGINNING
PRESS 'ENTER' WHEN READY.....

Since vyou have rewinded the tape in Step 1, you can go to
the next step.

3. Press PLAY and RECORD on the recorder.

10-13

I/0 COMMANDS AND OPERATIONS

4. Press ENTER.

Rogo will start saving all the procedures which are
currently in the RAM. When a part of the workspace is
being saved, a SAVING: WORKSPACE message is displayed.
After that part of the workspace has been saved, a WRITE OK
message appears.

EXAMPLE :
SAVING: WORKSPACE WRITE OK
SAVING: WORKSPACE

When all the procedures have been saved, the "SAVING
COMPLETED" message and the prompt sign are displayed.

If an error occurs in the course of saving, an error message
"WRITE FERROR" will appear and Rogo will stop saving. You
will be brought back to the Text Screen. Repeat the steps
from the beginning. If the error persists, refer to Appendix
A for a solution.

The motor of the recorder will be stopped automatically when
all the procedures in the workspace have been saved.

5. Press STOP on the recorder.

10.8 LOAD “CAS (COMMAND)

Loads a workspace intoc the RAM from a tape.

Syntax: LOAD "CAS
STEPS

1. Prepare the tape that holds the workspace (read 3.4 for
details).

10-14

2.

5.

1/0 COMMANDS AND OPERATIONS

Type LDAD "CAS on the Text Screen. The following message
will be displayed:

PLEASE REWIND TAPE TO THE BEGINNING
PRESS 'ENTER' WHEN READY.....

Since you have rewinded the tape in Step 1, you can go to
the next step.

Press ENTER.
Press PLAY on the recorder.

Every procedure in the tape will be loaded into the RAM.
When a part of the saved workspace is found, a FOUND:
WORKSPACE is displayed and a READ OK message appears when
the loading of that part of the workspace has been
completed.

EXAMPLE :
FOUND: WORKSPACE READ OK
FOUND: WORKSPACE

If Rogo encounters an error in loading, the READ ERROR
message will be displayed and the loading will be stopped.
Repeat from Step 1. If the problem persists, refer to
Appendix A for a solution.

When all the procedures saved on the tape are loaded, the
END OF TAPE message and prompt sign are displayed. If the
message does not appear at the end of the tape, an error
must have occured. Switch the computer off and on again.
Repeat from Step 1. If the problem persists, refer to
Appendix A for a solution.

STOP the recorder.

10-15

1/0 COMMANDS AND OPERATIONS

10.9 CHAPTER SUMMARY

PRIMITIVE SYNTAX DESCRIPTION

PRINT PRINT <input> Prints 1its input on the
screen.

LOCATE LOCATE <column> Locates the character

{row> position for PRINT.

READC READC Reads the keyboard and
outputs the first word
entered.

READL READL Reads the keyboard and
outputs the line entered as
a list.

J1 J1 <switch number> Qutputs true if the
specified switch of Joystick
Port 1 of the computer is
closed.

Jz J2 <switch number> Qutputs true if the
specified switch of Joystick
Port 2 of the computer is
closed.

SAVE SAVE '"CAS Saves a workspace into a
tape.

LOAD SAVE "CAS Loads a workspace into the

RAM from a tape.

10-16

CHAPTER 11
-WORDS AND LISTS PROCESSING

Nine additional primitives are supported in Version 1.1 of the
Rogo Cartridge to help manipulate words and lists. They are BF,
FIRST, WORD, SE, LPUT, NUMBERP, WORDP, LISTP, and EMPTYP. All
of them are operations.

Below are two little games that demonstrate some of the
potential of these operations. The first is a quiz. The second
is a story generator.

EXAMPLL :

? T0 "QUIZ

>MAKE "COUNTRY [AUSTRALIA BELGIUM BRAZIL CANADA CHINA FRANCE
ITALY JAPAN NORWAY SPAIN SWEDEN U.K. U.S.A.]

>MAKE "CAPITAL [CANBERRA BRUSSELS BRASILIA OTTAWA BEIJING PARIS
ROME TOKYO OSLO MADRID STOCKHOLM LONDON WASHINGTON]

>CLS

>REPECAT 13 [PRINT SE SE [WHAT'S THE CAPITAL OF] FIRST :COUNTRY
"7 TEST READC = FIRST :CAPITAL IFTRUE [FD 150 FU 150 PRINT
"RIGHT!] IFFALSE [BC 150 BA 150 PRINT "SORRY!] PRINT [] MAKE
"COUNTRY BF :COUNTRY MAKE "CAPITAL BF :CAPITAL)

>END

>AZ

QUIZ only gives vyou the framework of writing a quiz about

countries and capitals. You can add your own list of countries.

But, note that the number of times to REPEAT should correspond
with the total number of countries.

11-1

WORDS AND LISTS PROCESSING

EXAMPLE:
? T0 "STORY :NAME

>PRINT SE SE [A LONG LONG TIME AGO, IN A FAR AWAY GALAXY, THERE
WAS A] FIRST :NAME .

>PRINT SE SE [HE WAS TELLING] BF :NAME [A STORY.]
>PRINT [HE SAID,]

>IF NOT EMPTYP BF :NAME [STORY BF :NAME]

>END

>AZ

? TO M"ASK

>PRINT [HAVE YOU EVER HEARD OF THE NEVER-ENDING STORY OF THE
GALAXY?] WAIT 100

>PRINT [LET ME TELL YOU.] WAIT S0
>PRINT [ENTER A LIST OF MONTERS.]
>MAKE "ENTRY READL

>PRINT [] PRINT [%xw*x]

>END

>hL

11-2

WORDS AND LISTS PROCESSING

? TO "START

>ASK

>STORY :ENTRY

>PRINT [«ev.n]

>END

>AZ

The story generator consists of 3 modules. You begin with
START. After you have entered a list of monsters, STORY tells
you a story about the monsters. Similar to QUIZ, START can be

edited as you like. See if you can make up an interesting
story.

11.1 BF (OPERATION)

Outputs all but the first element of the input.

Syntax: BF <object>

NOTE : <object> can be a word, a list, a number or a
variable whose value is a word, a list or a number.

EXAMPLE :

7 PRINT BF "ABC

BC

? PRINT BF [U.S.A. WASHINGTON D.C.]

WASHINGTON D.C.

? PRINT BF [[U.S.A. WASHINGTON D.C.] [CANADA OTTAWA}]

11-3

WORDS AND LISTS PROCESSING

[CANADA OTTAWA]

? PRINT BF 123

23

? MAKE "A [THIS IS A LOVELY WORLD]
? PRINT BF :A

IS A LOVELY WORLD

Outputing the content of an empty word or list is always
erroneocus :

EXAMPLE :

? PRINT BF "
SYNTAX ERROR IN BF
? PRINT BF []
SYNTAX ERROR IN BF
EXAMPLE :

? TO "BEGIN :0BJ
SMAKE "INV []

>REV :0BJ

>END

>N

11-4

WORDS AND LISTS PROCESSING

? T0 "REV :0B3

>If EMPTYP :0BJ [PRINT :INV STOP]
>MAKE "INV SE FIRST :0BJ :INV
>REV BF :0B3

>END

>AZ

7 BEGIN [WHO ARE YOU]

YOU ARE WHO

? BEGIN [BUNNY]

BUNNY
7 BEGIN MBUNNY
YNNUB

EMPTYP is a primitive that outputs true if the input is an
empty word or empty list. FIRST outputs the first element of
the input, whereas SE outputs the inputs as a list (read 11.2,
11.4 and 11.9 for details). In REV, EMPTYP acts as a control.
Let's say you enter WHO ARE YOU as the input. FIRST outputs
WHO and SE 1links it with the content of INV which has been
initialized as an empty list. Then BF outputs ARE YOU which
becomes the input of REV. FIRST outputs ARE and SE links it
with WHO. YOU is now the only element of the input, SE lirks
it with ARL WHO. When the input becomes empty, the content of
INV, YOU ARE WHO in this case, is printed and the loop stops.

11-5

WORDS AND LISTS PROCESSING

11.2 FIRST (OPERATION)

Outputs the first element of the input.

Syntax: FIRST <object>

NOTE : <object> can be a word, a list, a number or a
variable. QOutputing the first element of an empty
word or list is always an error.

EXAMPLE :

? PRINT FIRST "ABC

? PRINT FIRST [U.K. LONDON]

U.K.

? PRINT FIRST [[U.K. LONDON] [JAPAN TOKYO]]
[U.K. LONDON]

? PRINT FIRST 123

? MAKE "A [THIS IS A LOVELY WORLD]
? PRINT FIRST :A PRINT BF :A
THIS

IS A LOVELY WORLD

11-6

WORDS AND LISTS PROCESSING

7 T4 "QUESS

>PRINT SE [WHAT'S THE CAPITAL OF] FIRST [CANADA OTTAWA]
>MAKE "ANS READC

>IF :ANS = BF [CANADA OTTAWA] [PRINT "RIGHT! STOP]
>PRINT "SORRY!

>END

>N

SE is a primitive that outputs its inputs in the form of s
list. Read 11.4 for details.

11.3 WORD (OPERATION)

Qutputs a word formed by its inputs.

Syntax: WORD <wordl> <word2>

NOTE : 1. <wordl> and <word2> must be words, numbers, or
variables. Anything other than these is an error.

2. WORD can read only 2 inputs at a time and the
number of characters in total must not exceed
254,
EXAMPLE :

? PRINT WORD "LITTER "BUG

LITTERBUG

11-7

WORDS AND LISTS PROCESSING

? PRINT WORD WORD WORD "0 "P "E "C

OPEC

7 PRINT WORD WORD WORD "SVI 2000 "C "ROGO
SVI2000CROGO

7 MAKE "A "LET

7?7 PRINT WORD "HAM :A

HAMLET

7 PRINT WORD "UNITED [STATES OF AMERICA]

SYNTAX ERROR IN WORD

11.4 SE (OPERATION)

OQutputs the inputs in form of a list.

Syntax: SE <objectl> <object2>

NOTE : 1. <objectl> and <object2> can be words,

numbers, or variables.

2. SE can read only 2 inputs at a time and the total
number of characters must
otherwise the STRING TOOG LONG IN SE error message

will appear. EXAMPLE:
? PRINT SE "BIG [BILLY GOAT GRUFF]

BIG BILLY GOAT GRUFF

11-8

WORDS AND LISTS PROCESSING

? PRINT SE SE "GREAT "BIG [BILLY GOAT GRUFF]
GREAT BIG BILLY GOAT GRUFF

? TO "GREETING

S>PRINT [WHAT'S YOUR NAME 7]

>PRINT SE SE [HOW ARE YOU,] READL "?

>END

>AZ

7 GREETING

WHAT'S YOUR NAME?

NOBODY

HOW ARE YOU, NOBODY 7

11.5 LPUT (OPERATION)

Outputs a new list formed by combining the first and second
imput.

Syntax: LPUT <list> <object>
NGTE : 1. The first input must be a list.

2. The second input can be a word, a list, a number,
or a variable.

EXAMPLE :
? PRINT LPUT [UNITED STATES OF] "AMERICA

UNITED STATES OF AMERICA
11-9

WORDS AND LISTS PROCESSING

The differences between SE and LPUT are demonstrated 1in the
following examples:

EXAMPLE :

? PRINT SE [I FORGOT TO REMEMBER.] [I REMEMBERED I FORGOT.]

I FORGOT TO REMEMBER. I REMEMBERED I fORGOT.

? PRINT LPUT [I FORGOT TO REMEMBER.] [I REMEMBERED I FORGOT.]

I FORGDT TO REMEMBER. [I REMEMBERED I FORGOT.]

? PRINT SE SE [TO BE] "OR [NOT TO BE]

T0 BE OR NOT TO BE

? PRINT LPUT LPUT [TO BE] "OR [NOT TO BE]

TO BE OR [NOT TO BE]

Notice the square brackets. SE forms a new list by linking the
elements of both inputs, whereas LPUT forms the list by simply
combining the inputs together. So, if the second input of LPUT
is a list, the square brackets will not be stripped off.

Besides, the first input of LPUT must be a list which is not a
must in 5E.

11-10

WORDS AND LISTS PROCESSING

11.6 NUMBERP (OPERATION)

Cutputs true if the input is a number; otherwise false.

Syntax: NUMBERP <input>

NUMBERP, WORDP, LISTP, and EMPTYP are four operations that work
very much alike. They are useful in controlling the flow of
procedures. To give you an idea how they work, we have included
them in an example in 11.9. But for the time being, let's look
at the function of each of these operations.

EXAMPLE :

? PRINT NUMBERP 123

TRUE

? PRINT NUMBERP "HELLO

FALSE

11.7 WORDP (OPERATION)

Outputs true if the input is a word or number; otherwise
false.

Syntax: WORDP <input>

EXAMPLE :

? PRINT WORDP 123

TRUE

11-11

WORDS AND LISTS PROCESSING

? PRINT WORDP "HELLO
TRUE
? PRINT WORDP [A WICKED OLD BEAR]

FALSE

11.8 LISTP (OPERATION)

Qutputs true if the input is a list; otherwise false.

Syntax: LISTP <input>

EXAMPLE :

? PRINT LISTP "HELLO

FALSE

? PRINT LISTP [A WICKED OLD WOLF]

TRUE

? PRINT LISTP []

TRUE

11-12

WORDS AND LISTS PROCESSING

11.9 EMPTYP (OPERATION)

Outputs true if the input is an empty word or list; otherwise
false.

Syntax: EMPTYP <input>
EXAMPLE :

? PRINT EMPTYP BF "A
TRUE

? PRINT EMPTYP []

TRUE

? PRINT EMPTYP 123
FALSE

? PRINT EMPTYP "HELLO
FALSE

? PRINT EMPTYP [A SLY OLD FOX]

FALSE

As mentioned in 11.6, NUMBERP, WORDP, LISTP, and EMPTYP are
very useful in contrelling the flow of procedures. Below is an
example that reveals the capabilities of these operations while
helping you introduce the basic concept of Rogo list, word, and
number to your friends.

11-13

WORDS AND LISTS PROCESSING

EXAMPLE :

? TO "TEACH

>PRINT [ENTER SOMETHING.]

>MAKE "ENTRY FIRST READL

>IF EMPTYP :ENTRY [PRINT [YOU DIDN'T ENTER ANYTHING. 1]

>IF NUMBERP :ENTRY [PRINT [THE FIRST ELEMENT IS A NUMBER.1]
>IF WORDP :ENTRY [PRINT [THE FIRST ELEMENT IS A WORD.]]

>IF AND NUMBERP :ENTRY WORDP :ENTRY [PRINT [THE FIRST ELEMENT
IS BOTH A NUMBER AND A WORD.]]

>IF LISTP :ENTRY [PRINT [THE FIRST ELEMENT IS A LIST.]]
>ASK
>END

>AZ

? 10 "ASK

>PRINT [TRY AGAIN? Y/N.]

>TEST READC = "Y

>IFTRUE [TEACH]

>IFFALSE [PRINT [BYE FOR NOW.] STOP]
>END

>AZ

11-14

WORDS AND LISTS PROCESSING

11.10 CHAPTER SUMMARY

PRIMITIVE SYNTAX DESCRIPTION
BF BF <abject> Qutputs all but the first
element of the input.

FIRST FIRST <object> | Outputs the first element of the
input.

WORD WORD <wordl> Outputs a new word formed by its

<word2> inputs.
SE SE <objectl> Outputs the inputs in the form
<object2> of a list.

LPUT LPUT <list> Outputs a new list formed by

<abject> combining the inputs.
NUMBERP NUMBERP <input>| Outputs true if the input is a
number; otherwise false.

WORDP WORDP <input> Outputs true if the input is a
word or a number; otherwise
false.

LISTP LISTP <input> Outputs true if the input is a
list; otherwise false.

EMPTYP EMPTYP <input> | Outputs true if the input is an

empty word or empty list;
otherwise false.

11-15

CHAPTER 12
SCREEN COMMANDS

There are 5 Screen Commands in Rogo: CLS, SHOWARM, HIDEARM,
SHOWTEXT, and HIDETEXT. CLS clears the Text Screen, SHOWARM
invokes the Graphic Screen, HIDEARM exits the Graphic Screen,
whereas SHOWTEXT and HIDETEXT toggle the display of text in the
Graphic Screen. Below 1is an example to illustrate how to
preview a movement before it actually takes place.

EXAMPLE :

? TQ0 "MOVE

>BA 200 BC 200 LU 200 LD 200 FU 200 FD 200 WA 200 WC 200 FO 200
FC 200

>END

>N

7 TO "PREVIEW
>SHOWARM
>MOVE
>HIDEARM
PEND

>hL

7 T0 "START
>PREVIEW
>MOVE

>END

>AZ

12-1

SCREEN COMMANDS

The above example consists of 3 modules: MOVE, PREVIEW, and
START. If you execute START, PREVIEW is called and MOVE is
simulated on the Graphic Screen. When the simulation 1is
completed, the actual Robotarm moves as specified in MOVE.

12.1 CLS (COMMAND)

Clears the Graphic Screen.

Syntax: CLS

whenever the Text Screen gets too messy, too full, or you simply
want to clear it for another purpose, such as in the case of
locating the position to print, enter CLS. The Text Screen will
then be cleared and the cursor will return to the top left-hand

corner {home position).

12,2 SHOWARM (COMMAND)

Invokes the Graphic Screen.

Syntax: SHOWARM

Entering this command will replace the Text Screen with the
Graphic Screen where the simulated movement of the Robotarm and
the angles of movement of the respective axes are displayed.

12-2

SCREEN COMMANDS

WINDOW 1 @ WINDOW 2
1 135

WINDOW 3
4 0

A5

A
A I
@:ﬂ WINDOW 4

A2 120 | [A3 35] (A5]

Fig. 12.1 The Graphic Screen

As you have noticed in the above 1illustration, the Graphic
Screen is made up of 4 windows:

Window 1 - It displays the outline of the Rebotarm and simulates
the movement of axis 2 and 3 (read Fig. 5.1 for details).

Window 2 - It is a top view of the Robotarm and shows the
rotation of axis 1.

Window 3 - It displays a front view of the forceps and reveals
the rotation of axis 4.

Window 4 - It 1is a close up of the front of the forceps.

12-3

SCREEN COMMANDS

12.3 HIDEARM (COMMAND)

Exits the Graphic Screen and returns to the Text Screen.

Syntax: HIDEARM

Entering this command will exit the Graphic Screen and you will
be brought back to the Text Screen.

12.4 SHOWTEXT (COMMAND)

Displays text in the Graphic Screen.

Syntax: SHOWTEXT

You can enter commands as usual in the Graphic Screen. Both the
actual Robotarm and the simulated one will move accordingly.
What you type will not be displayved by default. If you feel more
comfortable to read as you type, enter SHOWTEXT. What you type
will then be displayed in 2 command lines on top of the Graphic
Screen.,

12.5 HIDETEXT (COMMAND)

Hides text in the Graphic Screen.

Syntax: HIDETEXT

It hides text in the Graphic Screen. It is the default choice.

12-4

SCREEN COMMANDS

12.6 CHAPTER SUMMARY

PRIMITIVE SYNTAX DESCRIPTION

CLS CLS Clears the Text Screen.

SHOWARM SHOWARM Invokes the Graphic Screen.
HIDEARM HIDEARM Exits the Graphic Screen.
SHOWTEXT SHOWTEXT Shows text in the Graphic Screen.
HIDETEXT HIDETEXT Hides text in the Graphic Screen.

12-5

APPENDIX A

TROUBLE-SHOOTING

Whenever Rogo
message :

encounters an error,

it displays an error

ERROR MESSAGE

DESCRIPTION

SYNTAX ERROR IN ...

The syntax of a certain command is
incorrect. Check thoroughly the
commands you have entered to see if

they are in the correct syntax.

I DON'T KNOW HOW TO

You have entered something that Rogo
understand. Check your
spelling or type COMMAND to see if
the specified command has been built-

doesn't

in.

NOT ENOUGH INPUTS The specified command or operation

10 ... requires the appropriate inputs
before it can be executed. Retype the
commands and be sure to enter the
necessary inputs as well.

OVERFLOW ERROR IN ... The number resulting from the latest

number you have
Try to use a

calculation or the
entered is too big.
smaller number.

UNDERFLOW ERROR IN ...

latest
number you have

The number resulting from the
calculation or the
entered is too small. Try to use a

larger number.

APPENDIX A

ERROR MESSAGE DESCRIPTION
SYSTEM BUG ERROR Something has caused fatal errors to
the system. If Rogo 1is halted,

reboot Rogo again.

NOTE: You may have noticed a primitive called SELFTEST when
you listed the directory of primitives. Running
SELFTEST will check the condition of the Rogo cartridge.
The general users may not find this primitive useful as
it is meant for the factory users only.

A4

APPENDIX B
QUICK REFERENCE SHEET

ROGO TERMINOLOGY

COMMAND - a keyword that causes Rogo to perform a
specific function

WORD - a word is a set of characters starting with
a letter and preceded by a double quotation
mark

LIST - a list is a set of characters enclosed by a

pair of square brackets

INSTRUCTIONLIST ~ an instruction or set of instructions
enclosed by a pair of sqguare brackets

VARTABLE - a "container" that holds a certain value

0BJECT - can be a word, list, the content of a
variable, or the result of a Logical
Operation

SPECIAL PUNCTUATION

OPERATION - a primitive that causes Rogo to output a
certain result without specifying what to do
with it

SYNTAX NOTATION

< > - the content within the angle brackets
specifies the nature of an input
- comes immediately before a Rogo word
[] - encloses a Rogo list
- placed before a word which is to be treated
as a variable

(NDTE: Below is the summary of all primitives in Logo.
Every operation is marked with an asterisk, *.)

B-1

APPENDIX B

ROBOTARM CONTROL COMMANDS

BC <time period> - rotates the base clockwise

BA <time period> - rotates the base anticlockwise
LU <time period> - raises the lowerarm

LD <time period> - lowers the lowerarm

FU <time period> - raises the forearm

FD <time period> - lowers the forearm

WC <time period> - rotates the wrist clockwise

WA <time period> - rotates the wrist anticlockwise
FO <time period> - opens the forceps

FC <time period> - closes the forceps

<time period> is the length of time you want Rogo to move the
specified part of the Robotarm. It can be expressed in a
positive real number, a variable, or an Arithmetic Operation.

VARIABLES

MAKE <variable name> <value> - assigns a value to a variable

THING <variable name>* - outputs the value of the named
variable

<variable name> can be made up of any combination of
alphanumeric characters and symbols as long as it begins with a
letter and does not exceed 9 characters.

<value> can be a word, a number, a list, an Arithmetic
Operation, or an I/0 Operation (J1, J2, READC or READL).

ARITHMETIC OPERATIONS

SUM <real number A> <real number B>* - adds A and B

DIFF <real number A> <real number B>* - subtracts B from A
PROD <real number A> <real number B>* - multiplies A with B
QUOT <real number A> <real number B>* - divides A by B

INT <real number>* - outputs the integer
portion

ROUND <real number>* - outputs the integer
round of f

APPENDIX B

LOGICAL OPERATIONS

<condition 1> < <condition 2>* - outputs true when <condition
1> is less than <condition 2>
outputs true when <candition

<condition 1> > <condition 2>*
1> is greater than <condition
2>

<condition 1> = <condition 2>* - outputs true when <condition
1> is equal to <condition 2>

<condition 1> <= <condition 2>* - outputs true when <condition
1> 1is less than or equal to
<condition 2>

outputs true when <condition

<condition 1> >= <condition 2>*
1> 1is greater than or equal
to <condition 2>

<condition 1> < > <condition 2> - outputs true when <condition
1> is not equal to <condition
2>

<condition 1> and <condition 2> in <, >, =, <=, >=, and < > can
be mnumbers, Arithmetic Operations, letters, or variables.

AND <condition 1> <condition 2>* - outputs true when
both <condition 1> and
<condition 2> are true

NOT <condition>* - outputs true when the
condition is not satisfied

OR <condition 1> <condition 2>* - outputs true when either or
both <condition 1> and
<condition 2> are true

XOR <condition 1> <condition 2>* - outputs true when either
<condition 1> or <condition
2> is true

<condition 1> and <condition 2> in AND, NOT, OR, and XOR must be
operations composed of <, >, =, <=, >= , < >, or 1/0 operations
involving true or false.

APPENDIX B8

CONTROL FLOW COMMANDS

IF <condition> <instructionlist> - executes the instructionlist
if the condition is true

<condition> can be a lLogical Operation or an 1/0 Operation
invelving J1 or J2.

TEST <condition>* - remembers 1if the condition
is true or false

<condition> can be a lLogical Operation or an 1/0 Operation
concerning true or false (e.g. J1).

IFTRUE <instructionlist> - executes the instructionlist
if the output of the latest
TEST operation is true

IFFALSE <instructionlist> - executes the instructionlist
if the output of the latest
TEST operation is false

<instructionlist> in IFTRUE and IFFALSE can be made up of user-
defined commands or primitives

REPEAT <number> <instructionlist>- repeats the instructionlist
for a specified number of

times.

<number> must be a positive whole number.

STOP - stops a running procedure
and returns control to the
top level

WAIT <time period> - waits for a specified time
period

<{time period> must be a positive whole number or an Arithmetic

Operation.

0P <object> - makes a specified Rogo
object an output of a
procedure

APPENDIX B

RUN <instructionlist> - runs an instructionlist
<¢instructionlist> in RUN can be a user-defined command, a
primitive, or an operation.

INPUT/OUTPUT COMMANDS

PRINT <input> - prints the input on the Text Screen

<input> can be a word, a list, a number, an Arithmetic

Operation, or a variable.

LOCATE <column><row>* - locates the character position for

PRINT

READC* - reads and outputs the first word typed

READL* - reads the first line entered and
outputs the line as a list

J1 <switch number>* - outputs true if the specified switch of
Joystick Port 1 of the computer is
closed

J2 <{switch number>* - outputs true if the specified switch of
Joystick Port 2 of the computer is
closed A

SAVE "CAS - saves the workspace onto a tape

LOAD "CAS - loads the workspace into the RAM from a
tape

WORDS/LISTS PROCESSING OPERATIONS

BF <object>* - outputs all but the first element of
the object

FIRST <object>* - outputs the first element of the
ob ject

<ob ject> can be a word, a list, a number, or a variable.

WORD <word 1> <word 2>* - outputs a word formed by <word 1> and
<word 2>

B-5

APPENDIX B

<word 1> and <word 2> must be words, numbers, or variables.

SE <objectl><object 2>* - outputs <object 1> and <object 2> in
form of a list

<object 1> and <object 2> can be words, lists, numbers or
variables.

LPUT <list> <object>* - outputs a new list formed by <list>
and <ob ject>

<object> can be a word, a list, a number, or a variable.

NUMBERP <input>* - outputs true if the input is a
number; otherwise false

WORDP <input>* - outputs true if the input is a word;
otherwise false

LISTP <input>* - outputs true if the input is a list;
otherwise false

EMPTYP <input>* - outputs true if the input is an empty
word or list; otherwise false

SCREEN COMMANDS

CLS - clears the Text Screen

SHOWARM - invokes the Graphic Screen
HIDEARM -~ exits the Graphic Screen
SHOWTEXT - displays text in Graphic Screen
HIDETEXT - hides text in Graphic Screen

B-6

OTHERS

10

EDIT

DIR
COMMAND
SELFTEST

APPENDIX B

defines a new command

edits a previously defined command

displays the directory of all defined procedures
displays the directory of Rego primitives
checks the condition of Rogo

EDITING KEYS IN THE COMMAND EDITOR

F1 / AT

F2 / AB

F3 / AA

F4 / AF

F5 / AZ

F6 / AP

F7 / AN

F8 / AD

FS / Al

F10 / AQ
DEL

INS ON/O

FF-

beginning of the procedure
bottom of the procedure
left one word

right one word

exits the Command Editor
up screen 10 lines

down screen 10 lines
deletes line

inserts line

aborts without saving
deletes character

inserts character in INS ON and overwrites when OFF
right character

left character

up one line

down one line

JOYSTICK SWITCH NUMBERS

N

2

7T— 9 —3

/N

6

5

B~7

APPENDIX C
USEFUL SAMPLE PROCEDURES

Below is a set of sample procedures which you can apply as
building blocks in your own procedures. Note that many of the
procedures are interrelated and therefore cannot operate on
their own.

EXAMPLE :

? TO "ABS :VALUE

>IF :VALUE < O [OP DIFF O :X]

>0P :VALUE

>END

>ANZ

7 PRINT ABS -1

7 PRINT ABS 1

ABS 1is a procedure to output the ABSOLUTE VALUE of a real
number. If the input is a negative number, OP will output the
difference between 0 and the input and then exit the procedure
automatically. Remember that ABS is an operation. You have to
PRINT ABS in order to read the result on the screen.

EXAMPLE :

7 70 "REMAIN :A :B

>0P ROUND PROD ABS :B DIFF QUOT :A :B INT QUOT :A :B
>END

>NZ

APPENDIX C

? PRINT REMAIN 5 2

7 PRINT REMAIN 10 4

REMAIN is an operation to output the REMAINDER of the division
of X by Y. Make sure you have defined ABS before executing
REMAIN since the former becomes one of the commands 1in the
latter.

EXAMPLE:

? T0 "ODDP :NUMBER

>IF REMAIN :NUMBER 2 = 1 [PRINT "ODD] STOP

>PRINT "EVEN

>END

>AZ

7 ODDP 5

0Db

? 0DDP 10

EVEN

ODDP is a procedure to check whether the input is ODD or EVEN.
It does it by making use of the REMAIN operation to output the
remainder of the division between the input and 2.

EXAMPLE :

? TO "SIN :X

APPENDIX C

>MAKE "N1 1 MAKE '"N2 -1 MAKE "X1 O
>MAKE "X2 1 MAKE "X3 PROD :X 0.017453

>MAKE "N 1

>REPEAT 15 [MAKE "N1 PROD :N1 :N MAKE 'X2 PROD :X2 :X3 IF ODDP
:N [MAKE ™N2 PROD -1 :N2 MAKE "X1 SuM :X1 QUOT PROD :X2 :N2
:N1] MAKE "N SUM :N 1]

>0P :X1

>END

>MZ

? PRINT SIN 45

. 70709747319768

SIN 1is a rather complex operation to output the SINE value of

the input. The procedure is quite mathematics-oriented, which

may be a bit puzzling for those who are not that strong in
trigonometry.

EXAMPLE :

? TO "FACT :X

>IF :X = 0 [0P 1]

>OP PROD :X FACT DIFF :X 1
>END

>AZ

? PRINT FACT &

24

APPENDIX C

? PRINT FACT 5

120

FACT is an operation to output the FACTORIAL of the input. For
instance, if you enter FACT 4, FACT will output the result of 4
X 3 X 2 X1, which equals 24.

FACT 1is different from the rest in that it is recursive. Note
the FACT DIFF :X 1 command. It decreases the input by 1 and
sends it back to the beginning of the procedure. The IF command
acts as a control to the recursive command. Whenever the value
of the input equals 1, it outputs 1 and exits the loop
automatically.

C-4

APPENDIX D
RECURSIVE COMMANDS

when a procedure calls itself, it becomes recursive. Let's look
at an example first:

EXAMPLE:

7 TO "COUNTBACK :START

>MAKE "NUMBER :START

>PRINT :NUMBER

>MAKE "NUMBER DIFF :NUMBER 1
>COUNTBACK :NUMBER

>END

>AL

Don't execute the above example yet. COUNTBACK is a recursive
procedure that deducts one from the number everytime the number
passes through the loop. It starts from the number you enter as
the input of COUNTBACK. What makes the procedure recursive is the
command COUNTBACK :NUMBER which, whenever executed, brings the
procedure back to the beginning again and thus an endless loop is
formed.

If you execute COUNTBACK, you will find you are caught in a
runaway procedure that will stop only when the Rogo buffer is
used up. Once the Rogo buffer is used up, Rogo exits the
procedure automatically and you are brought back to the prompt.
To give you an idea how far you can go in a recursive command,
let's experiment‘with COUNTBACK. If you are ready, type COUNTBACK
c.

whenever COUNTBACK is executed once, a number is printed on the
screen. You will get a running list of number in descending
order. After a while, you will get a NESTING IS TOO DEEP message
and the procedure is exited.

APPENDIX D

Obviously, that's not a very effective way of controlling a
recursive command. There are better ways. For instance, you can
make use of the Control Flow Commands. Let's change COUNTBACK as
follows:

7 TO "COUNTBACK :NUMBER

>PRINT :NUMBER

>IF INT :NUMBER = O [STOP]

>COUNTBACK DIFF :NUMBER 1

>END

>N

Notice the IF command. It checks whether the number has reached
0. If it has, it will stop the procedure. In fact, it is up to
you when or where to exit a recursive command. Now you can
execute the procedure and see what we mean. Don't forget to enter
a positive real number along with the command COUNTBACK. If you
enter a number smaller than O for COUNTBACK to start with, the IF
command you have inserted in COUNTBACK as a control will have no
effect on the recursive procedure.

XAMPLE ¢

7?7 1O "MOVE

>IF J1 1 [PRINT [LOWERARM UP] LU 200]

>IF J2 1 [PRINT [FOREARM UP] FU 200]

>IF J1 3 [PRINT [BASE CLOCKWISE] BA 200]

>IF J2 3 [PRINT [WRIST CLOCKWISE] WC 200]

D-2

APPENDIX D

>IF 31 5 [PRINT [LOWERARM DOWN] LD 200]

>IF J2 5 [PRINT [FOREARM DOWN] FD 200]

>IF J1 7 [PRINT [BASE ANTICLOCKWISE] BA 200]
>IF J2 7 [PRINT [WRIST ANTICLOCKWISE] WA 200]
>END

>AZ

7 T0 "JOYSTICKS

>TEST AND J1 9 J2 9

>IFTRUE [STOP]

>IFFALSE [MOVE]
>JAYSTICKS
>END

>AZ

In the above example, the procedure is made up of 2 modules,
JOYSTICKS and MOVE. It begins with JOYSTICKS which tests if the
firebuttons of both joysticks are pressed. If they are, JOYSTICKS
will stop the procedure. Otherwise, it will execute MOVE. You may
have noticed that JOYSTICKS is recursive. It will not stop unless
you press both firebuttons together, or the buffer is used up.

APPENDIX D

Consider the two examples below:

EXAMPLE 1

? TO "COUNTL :VARIABLE

>PRINT :NUMBER

>COUNT SUM :NUMBER 1

>END

>NZ

EXAMPLE 2

? TO "COUNT2 :VARIABLE

>MAKE "NUMBER :VARIABLE

>REPEAT 569 [PRINT :NUMBER MAKE '"NUMBER SUM :NUMBER 1]

>END

>AZ

EXAMPLE 1 is a recursive command which gives you a list of
numbers in ascending order. In normal case, it will loop some 569
times before it stops. EXAMPLE 2 is an ordinary procedure. B8y
using the REPEAT command, it will loop 569 times giving exactly
the same result as you may have in EXAMPLE 1. Though the

procedures work alike, EXAMPLE 2 is preferable since it will
not drain the buffer.

APPENDIX D

Some final words on recursive commands. When you write a
recursive command, you must control it. If you let go a recursive
procedure, most probably you will drain the buffer. If you are
not sure you can keep a recursive command under control, you'd
better leave it alone and use some other commands instead.

FIX LABELS ON JOYSTICKS
AS SHOWN IN MANUAL

AXIS

)<
5
-

XIS

=
7

J1°

PRINTED IN HONG KDNG IMPRIME A HONG KONG

